Amazon Neptune with SPARQL
Amazon Neptune 是高性能图分析和无服务器数据库,可提供卓越的可伸缩性和可用性。
此示例演示了一个 QA 链,该链使用
SPARQL查询语言查询Amazon Neptune图数据库中的 Resource Description Framework (RDF) 数据,并返回人类可读的响应。SPARQL 是
RDF图的标准查询语言。
此示例使用 NeptuneRdfGraph 类,该类连接到 Neptune 数据库并加载其模式。
create_neptune_sparql_qa_chain 用于连接图和 LLM,以提出自然语言问题。
本笔记本演示了一个使用组织数据的示例。
运行此笔记本的先决条件:
- Neptune 1.2.x 集群,可从本笔记本访问
- 内核为 Python 3.9 或更高版本
- 对于 Bedrock 访问,请确保 IAM 角色具有此策略
{
"Action": [
"bedrock:ListFoundationModels",
"bedrock:InvokeModel"
],
"Resource": "*",
"Effect": "Allow"
}
- 用于暂存示例数据的 S3 存储桶。存储桶应与 Neptune 位于同一账户/区域。
设置
播种 W3C 组织数据
播种 W3C 组织数据,包括 W3C org ontology 以及一些实例。
你需要在与 Neptune 集群相同的区域和账户中创建一个 S3 存储桶。将 STAGE_BUCKET 设置为该存储桶的名称。
STAGE_BUCKET = "<bucket-name>"
%%bash -s "$STAGE_BUCKET"
rm -rf data
mkdir -p data
cd data
echo getting org ontology and sample org instances
wget http://www.w3.org/ns/org.ttl
wget https://raw.githubusercontent.com/aws-samples/amazon-neptune-ontology-example-blog/main/data/example_org.ttl
echo Copying org ttl to S3
aws s3 cp org.ttl s3://$1/org.ttl
aws s3 cp example_org.ttl s3://$1/example_org.ttl
我们将使用 graph-notebook 包中的 %load magic 命令将 W3C 数据插入 Neptune 图中。在运行 %load 之前,请使用 %%graph_notebook_config 来设置图连接参数。
!pip install --upgrade --quiet graph-notebook
%load_ext graph_notebook.magics
%%graph_notebook_config
{
"host": "<neptune-endpoint>",
"neptune_service": "neptune-db",
"port": 8182,
"auth_mode": "<[DEFAULT|IAM]>",
"load_from_s3_arn": "<neptune-cluster-load-role-arn>",
"ssl": true,
"aws_region": "<region>"
}
批量加载组织时间戳(ttl)——包括本体和实例。
%load -s s3://{STAGE_BUCKET} -f turtle --store-to loadres --run
%load_status {loadres['payload']['loadId']} --errors --details
设置链
!pip install --upgrade --quiet langchain-aws
** 重启内核 **
准备一个示例
EXAMPLES = """
<question>
Find organizations.
</question>
<sparql>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX org: <http://www.w3.org/ns/org#>
select ?org ?orgName where {{
?org rdfs:label ?orgName .
}}
</sparql>
<question>
Find sites of an organization
</question>
<sparql>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX org: <http://www.w3.org/ns/org#>
select ?org ?orgName ?siteName where {{
?org rdfs:label ?orgName .
?org org:hasSite/rdfs:label ?siteName .
}}
</sparql>
<question>
Find suborganizations of an organization
</question>
<sparql>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX org: <http://www.w3.org/ns/org#>
select ?org ?orgName ?subName where {{
?org rdfs:label ?orgName .
?org org:hasSubOrganization/rdfs:label ?subName .
}}
</sparql>
<question>
Find organizational units of an organization
</question>
<sparql>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX org: <http://www.w3.org/ns/org#>
select ?org ?orgName ?unitName where {{
?org rdfs:label ?orgName .
?org org:hasUnit/rdfs:label ?unitName .
}}
</sparql>
<question>
Find members of an organization. Also find their manager, or the member they report to.
</question>
<sparql>
PREFIX org: <http://www.w3.org/ns/org#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
select * where {{
?person rdf:type foaf:Person .
?person org:memberOf ?org .
OPTIONAL {{ ?person foaf:firstName ?firstName . }}
OPTIONAL {{ ?person foaf:family_name ?lastName . }}
OPTIONAL {{ ?person org:reportsTo ??manager }} .
}}
</sparql>
<question>
Find change events, such as mergers and acquisitions, of an organization
</question>
<sparql>
PREFIX org: <http://www.w3.org/ns/org#>
select ?event ?prop ?obj where {{
?org rdfs:label ?orgName .
?event rdf:type org:ChangeEvent .
?event org:originalOrganization ?origOrg .
?event org:resultingOrganization ?resultingOrg .
}}
</sparql>
"""
创建 Neptune 数据库 RDF 图谱
from langchain_aws.graphs import NeptuneRdfGraph
host = "<your host>"
port = 8182 # change if different
region = "us-east-1" # change if different
graph = NeptuneRdfGraph(host=host, port=port, use_iam_auth=True, region_name=region)
# Optionally, change the schema
# elems = graph.get_schema_elements
# change elems ...
# graph.load_schema(elems)
使用 Neptune SPARQL QA Chain
此 QA Chain 使用 SPARQL 查询 Neptune 图数据库,并返回人类可读的响应。
from langchain_aws import ChatBedrockConverse
from langchain_aws.chains import create_neptune_sparql_qa_chain
MODEL_ID = "anthropic.claude-3-5-sonnet-20241022-v2:0"
llm = ChatBedrockConverse(
model_id=MODEL_ID,
temperature=0,
)
chain = create_neptune_sparql_qa_chain(
llm=llm,
graph=graph,
examples=EXAMPLES,
)
result = chain.invoke("How many organizations are in the graph?")
print(result["result"].content)
试试下面这些针对已摄入图数据的提示。
result = chain.invoke("Are there any mergers or acquisitions?")
print(result["result"].content)
result = chain.invoke("Find organizations.")
print(result["result"].content)
result = chain.invoke("Find sites of MegaSystems or MegaFinancial.")
print(result["result"].content)
result = chain.invoke("Find a member who is a manager of one or more members.")
print(result["result"].content)
result = chain.invoke("Find five members and their managers.")
print(result["result"].content)
result = chain.invoke(
"Find org units or suborganizations of The Mega Group. What are the sites of those units?"
)
print(result["result"].content)
添加消息历史记录
Neptune SPARQL QA 链可以通过 RunnableWithMessageHistory 进行封装。这将为链添加消息历史记录,使我们能够创建一个跨多次调用的、可以保留对话状态的聊天机器人。
首先,我们需要一种存储和加载消息历史记录的方法。为此,每个会话都将创建为 InMemoryChatMessageHistory 的 实例,并存储在一个字典中以便重复访问。
(另请参阅:https://python.langchain.com/docs/versions/migrating_memory/chat_history/#chatmessagehistory)
from langchain_core.chat_history import InMemoryChatMessageHistory
chats_by_session_id = {}
def get_chat_history(session_id: str) -> InMemoryChatMessageHistory:
chat_history = chats_by_session_id.get(session_id)
if chat_history is None:
chat_history = InMemoryChatMessageHistory()
chats_by_session_id[session_id] = chat_history
return chat_history
现在,QA 链和消息历史存储可用于创建新的 RunnableWithMessageHistory。请注意,我们必须将 query 设置为输入键,以匹配基础链的预期格式。
from langchain_core.runnables.history import RunnableWithMessageHistory
runnable_with_history = RunnableWithMessageHistory(
chain,
get_chat_history,
input_messages_key="query",
)
在调用链之前,需要为对话生成一个唯一的 session_id,InMemoryChatMessageHistory 将会记住它。
import uuid
session_id = uuid.uuid4()
最后,调用具有 session_id 的消息历史记录启用链。
result = runnable_with_history.invoke(
{"query": "How many org units or suborganizations does the The Mega Group have?"},
config={"configurable": {"session_id": session_id}},
)
print(result["result"].content)
随着链使用相同的 session_id 被反复调用,响应将根据对话中先前的查询在上下文中返回。
result = runnable_with_history.invoke(
{"query": "List the sites for each of the units."},
config={"configurable": {"session_id": session_id}},
)
print(result["result"].content)