Facebook Messenger
本笔记本展示了如何将数据从 Facebook 加载到可以进行微调的格式。总体步骤如下:
- 将信息数据下载到磁盘。
- 创建 Chat Loader 并调用
loader.load()(或loader.lazy_load())执行转换。 - 可选使用
merge_chat_runs将来自同一发送者的消息按顺序合并,以及/或者使用map_ai_messages将来自指定发送者的消息转换为 "AIMessage" 类。完成这些操作后,调用convert_messages_for_finetuning来为你的数据进行微调做准备。
完成后,你就可以对模型进行微调了。要做到这一点,你需要完成以下步骤:
- 将你的消息上传到 OpenAI 并运行微调作业 。
- 在你的 LangChain 应用中使用生成的模型!
让我们开始吧。
1. 下载数据
要下载你自己的信息数据,请按照此处的说明进行操作。重要提示 - 确保以 JSON 格式下载(而不是 HTML)。
我们在这里托管了一个示例转储,此谷歌云端硬盘链接 将在本教程中使用。
# This uses some example data
import zipfile
import requests
def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
with zipfile.ZipFile(output_path, "r") as zip_ref:
zip_ref.extractall()
print(f"File {output_path} has been unzipped.")
# URL of the file to download
url = (
"https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing"
)
# Download and unzip
download_and_unzip(url)
File file.zip downloaded.
File file.zip has been unzipped.
2. 创建聊天加载器
我们有 2 个不同的 FacebookMessengerChatLoader 类,一个用于整个聊天目录,另一个用于加载单个文件。我们
directory_path = "./hogwarts"
from langchain_community.chat_loaders.facebook_messenger import (
FolderFacebookMessengerChatLoader,
SingleFileFacebookMessengerChatLoader,
)
loader = SingleFileFacebookMessengerChatLoader(
path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json",
)
chat_session = loader.load()[0]
chat_session["messages"][:3]
[HumanMessage(content="Hi Hermione! How's your summer going so far?", additional_kwargs={'sender': 'Harry Potter'}),
HumanMessage(content="Harry! Lovely to hear from you. My summer is going well, though I do miss everyone. I'm spending most of my time going through my books and researching fascinating new topics. How about you?", additional_kwargs={'sender': 'Hermione Granger'}),
HumanMessage(content="I miss you all too. The Dursleys are being their usual unpleasant selves but I'm getting by. At least I can practice some spells in my room without them knowing. Let me know if you find anything good in your researching!", additional_kwargs={'sender': 'Harry Potter'})]
loader = FolderFacebookMessengerChatLoader(
path="./hogwarts",
)
chat_sessions = loader.load()
len(chat_sessions)
9
3. 为微调做准备
调用 load() 会返回我们能提取到的所有聊天消息,这些消息都作为人类消息加载。在与聊天机器人对话时,相比于真实的对话,对话通常遵循更严格的交替对话模式。
你可以选择合并消息“运行”(来自同一发送者的连续消息)并选择一个发送者来代表“AI”。微调后的 LLM 将学会生成这些 AI 消息。
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
API Reference:map_ai_messages | merge_chat_runs
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "Harry Potter"))
# Now all of Harry Potter's messages will take the AI message class
# which maps to the 'assistant' role in OpenAI's training format
alternating_sessions[0]["messages"][:3]
[AIMessage(content="Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately.", additional_kwargs={'sender': 'Harry Potter'}),
HumanMessage(content="What is it, Potter? I'm quite busy at the moment.", additional_kwargs={'sender': 'Severus Snape'}),
AIMessage(content="I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister.", additional_kwargs={'sender': 'Harry Potter'})]
现在我们可以转换为 OpenAI 格式的字典
from langchain_community.adapters.openai import convert_messages_for_finetuning
API Reference:convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(alternating_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
Prepared 9 dialogues for training
training_data[0][:3]
[{'role': 'assistant',
'content': "Professor Snape, I was hoping I could speak with you for a moment about something that's been concerning me lately."},
{'role': 'user',
'content': "What is it, Potter? I'm quite busy at the moment."},
{'role': 'assistant',
'content': "I apologize for the interruption, sir. I'll be brief. I've noticed some strange activity around the school grounds at night. I saw a cloaked figure lurking near the Forbidden Forest last night. I'm worried someone may be plotting something sinister."}]
OpenAI 目前要求微调任务至少有 10 个训练样本,尽管他们建议大多数任务需要 50-100 个。由于我们只有 9 次聊天会话,我们可以将它们细分(可选地进行一些重叠),以便每个训练样本由一部分完整的对话组成。
Facebook 聊天会话(每人 1 次)通常跨越多个天数和对话, 因此,长程依赖性无论如何可能并不那么重要,无需建模。
# Our chat is alternating, we will make each datapoint a group of 8 messages,
# with 2 messages overlapping
chunk_size = 8
overlap = 2
training_examples = [
conversation_messages[i : i + chunk_size]
for conversation_messages in training_data
for i in range(0, len(conversation_messages) - chunk_size + 1, chunk_size - overlap)
]
len(training_examples)
100
4. 微调模型
是时候微调模型了。请确保你已安装 openai
并且已正确设置你的 OPENAI_API_KEY
%pip install --upgrade --quiet langchain-openai
import json
import time
from io import BytesIO
import openai
# We will write the jsonl file in memory
my_file = BytesIO()
for m in training_examples:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
# OpenAI audits each training file for compliance reasons.
# This make take a few minutes
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
File file-ULumAXLEFw3vB6bb9uy6DNVC ready after 0.00 seconds.
文件准备就绪后,就可以开始训练作业了。
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
在模型准备好之前,先来杯茶吧。这可能需要一些时间!
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.fine_tuning.jobs.retrieve(job.id)
status = job.status
Status=[running]... 874.29s. 56.93s
print(job.fine_tuned_model)
ft:gpt-3.5-turbo-0613:personal::8QnAzWMr
5. 在 LangChain 中使用
您可以直接在 ChatOpenAI 模型类中使用生成的模型 ID。
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
API Reference:ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
]
)
chain = prompt | model | StrOutputParser()
API Reference:StrOutputParser | ChatPromptTemplate
for tok in chain.stream({"input": "What classes are you taking?"}):
print(tok, end="", flush=True)
I'm taking Charms, Defense Against the Dark Arts, Herbology, Potions, Transfiguration, and Ancient Runes. How about you?