Skip to content

使用子图

本指南将介绍使用 子图 的机制。子图的一个常见应用是构建 多智能体 系统。

添加子图时,需要定义父图和子图如何通信:

设置

pip install -U langgraph

为 LangGraph 开发设置 LangSmith

注册 LangSmith 以快速发现问题并改进 LangGraph 项目的性能。LangSmith 可让您使用跟踪数据来调试、测试和监控您使用 LangGraph 构建的 LLM 应用 — 在此处详细了解如何开始阅读的更多信息。

共享状态模式

常见的情况是父图和子图通过状态 模式 中的共享状态键(通道)进行通信。例如,在 多智能体 系统中,智能体通常通过共享的 消息 键进行通信。

如果您的子图与父图共享状态键,您可以按照以下步骤将其添加到图中:

  1. 定义子图工作流(下方示例中的 subgraph_builder)并编译它
  2. 在定义父图工作流时,将编译后的子图传递给 .add_node 方法

API Reference: StateGraph

from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

class State(TypedDict):
    foo: str

# 子图

def subgraph_node_1(state: State):
    return {"foo": "hi! " + state["foo"]}

subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# 父图

builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
完整示例:共享状态模式
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

# 定义子图
class SubgraphState(TypedDict):
    foo: str  # (1)! 
    bar: str  # (2)!

def subgraph_node_1(state: SubgraphState):
    return {"bar": "bar"}

def subgraph_node_2(state: SubgraphState):
    # 注意此节点正在使用仅在子图中可用的状态键 ('bar')
    # 并正在向共享状态键 ('foo') 发送更新
    return {"foo": state["foo"] + state["bar"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()

# 定义父图
class ParentState(TypedDict):
    foo: str

def node_1(state: ParentState):
    return {"foo": "hi! " + state["foo"]}

builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()

for chunk in graph.stream({"foo": "foo"}):
    print(chunk)
  1. 此键与父图状态共享
  2. 此键是 SubgraphState 的私有键,父图看不到
{'node_1': {'foo': 'hi! foo'}}
{'node_2': {'foo': 'hi! foobar'}}

不同的状态模式

对于更复杂的系统,您可能希望定义具有与父图**完全不同模式**(无共享键)的子图。例如,您可能希望为 多智能体 系统中的每个智能体维护一个私有消息历史记录。

如果您的应用程序是这种情况,您需要定义一个**调用子图的函数**。该函数需要在调用子图之前转换输入(父)状态到子图状态,并在返回状态更新之前将结果转换回父状态。

API Reference: StateGraph

from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

class SubgraphState(TypedDict):
    bar: str

# 子图

def subgraph_node_1(state: SubgraphState):
    return {"bar": "hi! " + state["bar"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# 父图

class State(TypedDict):
    foo: str

def call_subgraph(state: State):
    subgraph_output = subgraph.invoke({"bar": state["foo"]})  # (1)!
    return {"foo": subgraph_output["bar"]}  # (2)!

builder = StateGraph(State)
builder.add_node("node_1", call_subgraph)
builder.add_edge(START, "node_1")
graph = builder.compile()
  1. 将状态转换为子图状态
  2. 将响应转换回父状态
完整示例:不同的状态模式
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

# 定义子图
class SubgraphState(TypedDict):
    # 注意这些键均未与父图状态共享
    bar: str
    baz: str

def subgraph_node_1(state: SubgraphState):
    return {"baz": "baz"}

def subgraph_node_2(state: SubgraphState):
    return {"bar": state["bar"] + state["baz"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()

# 定义父图
class ParentState(TypedDict):
    foo: str

def node_1(state: ParentState):
    return {"foo": "hi! " + state["foo"]}

def node_2(state: ParentState):
    response = subgraph.invoke({"bar": state["foo"]})  # (1)!
    return {"foo": response["bar"]}  # (2)!


builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", node_2)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()

for chunk in graph.stream({"foo": "foo"}, subgraphs=True):
    print(chunk)
  1. 将状态转换为子图状态
  2. 将响应转换回父状态
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('node_2:9c36dd0f-151a-cb42-cbad-fa2f851f9ab7',), {'grandchild_2': {'bar': 'hi! foobaz'}})
((), {'node_2': {'foo': 'hi! foobaz'}})
完整示例:不同状态模式(两层子图)

这是关于两层子图的示例:父图 -> 子图 -> 孙子图。

# 孙子图
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START, END

class GrandChildState(TypedDict):
    my_grandchild_key: str

def grandchild_1(state: GrandChildState) -> GrandChildState:
    # 注意:在此处无法访问子图或父图的键
    return {"my_grandchild_key": state["my_grandchild_key"] + ", how are you"}


grandchild = StateGraph(GrandChildState)
grandchild.add_node("grandchild_1", grandchild_1)

grandchild.add_edge(START, "grandchild_1")
grandchild.add_edge("grandchild_1", END)

grandchild_graph = grandchild.compile()

# 子图
class ChildState(TypedDict):
    my_child_key: str

def call_grandchild_graph(state: ChildState) -> ChildState:
    # 注意:在此处无法访问父图或孙子图的键
    grandchild_graph_input = {"my_grandchild_key": state["my_child_key"]}  # (1)!
    grandchild_graph_output = grandchild_graph.invoke(grandchild_graph_input)
    return {"my_child_key": grandchild_graph_output["my_grandchild_key"] + " today?"}  # (2)!

child = StateGraph(ChildState)
child.add_node("child_1", call_grandchild_graph)  # (3)!
child.add_edge(START, "child_1")
child.add_edge("child_1", END)
child_graph = child.compile()

# 父图
class ParentState(TypedDict):
    my_key: str

def parent_1(state: ParentState) -> ParentState:
    # 注意:在此处无法访问子图或孙子图的键
    return {"my_key": "hi " + state["my_key"]}

def parent_2(state: ParentState) -> ParentState:
    return {"my_key": state["my_key"] + " bye!"}

def call_child_graph(state: ParentState) -> ParentState:
    child_graph_input = {"my_child_key": state["my_key"]}  # (4)!
    child_graph_output = child_graph.invoke(child_graph_input)
    return {"my_key": child_graph_output["my_child_key"]}  # (5)!

parent = StateGraph(ParentState)
parent.add_node("parent_1", parent_1)
parent.add_node("child", call_child_graph)  # (6)!
parent.add_node("parent_2", parent_2)

parent.add_edge(START, "parent_1")
parent.add_edge("parent_1", "child")
parent.add_edge("child", "parent_2")
parent.add_edge("parent_2", END)

parent_graph = parent.compile()

for chunk in parent_graph.stream({"my_key": "Bob"}, subgraphs=True):
    print(chunk)
  1. 我们正在将状态从子图状态通道 (my_child_key) 转换为子图状态通道 (my_grandchild_key)
  2. 我们正在将状态从孙子图状态通道 (my_grandchild_key) 转换回子图状态通道 (my_child_key)
  3. 这里传递的是函数,而不是仅仅是编译后的图(grandchild_graph
  4. 我们正在将状态从父图状态通道 (my_key) 转换为子图状态通道 (my_child_key)
  5. 我们正在将状态从子图状态通道 (my_child_key) 转换回父图状态通道 (my_key)
  6. 这里传递的是函数,而不是仅仅是编译后的图(child_graph
((), {'parent_1': {'my_key': 'hi Bob'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b', 'child_1:781bb3b1-3971-84ce-810b-acf819a03f9c'), {'grandchild_1': {'my_grandchild_key': 'hi Bob, how are you'}})
(('child:2e26e9ce-602f-862c-aa66-1ea5a4655e3b',), {'child_1': {'my_child_key': 'hi Bob, how are you today?'}})
((), {'child': {'my_key': 'hi Bob, how are you today?'}})
((), {'parent_2': {'my_key': 'hi Bob, how are you today? bye!'}})

添加持久化

您只需要在**编译父图时提供 checkpointer**。LangGraph 会自动将 checkpointer 传播到子图。

API Reference: START | StateGraph | InMemorySaver

from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from typing_extensions import TypedDict

class State(TypedDict):
    foo: str

# 子图

def subgraph_node_1(state: State):
    return {"foo": state["foo"] + "bar"}

subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# 父图

builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")

checkpointer = InMemorySaver()
graph = builder.compile(checkpointer=checkpointer)

如果您希望子图**拥有自己的内存**,可以通过 with checkpointer=True 来编译它。这在 多智能体 系统中很有用,如果您希望智能体能够跟踪它们内部的消息历史记录:

subgraph_builder = StateGraph(...)
subgraph = subgraph_builder.compile(checkpointer=True)

查看子图状态

当您启用 持久化 时,可以通过 graph.get_state(config)检查图状态(检查点)。要查看子图状态,可以使用 graph.get_state(config, subgraphs=True)

仅在中断时可用

子图状态**仅在子图中断时**才能查看。一旦您恢复图,将无法访问子图状态。

查看中断的子图状态
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.types import interrupt, Command
from typing_extensions import TypedDict

class State(TypedDict):
    foo: str

# 子图

def subgraph_node_1(state: State):
    value = interrupt("Provide value:")
    return {"foo": state["foo"] + value}

subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")

subgraph = subgraph_builder.compile()

# 父图

builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")

checkpointer = InMemorySaver()
graph = builder.compile(checkpointer=checkpointer)

config = {"configurable": {"thread_id": "1"}}

graph.invoke({"foo": ""}, config)
parent_state = graph.get_state(config)
subgraph_state = graph.get_state(config, subgraphs=True).tasks[0].state  # (1)!

# 恢复子图
graph.invoke(Command(resume="bar"), config)
  1. 只有当子图中断时才能获得此信息。一旦您恢复图,将无法访问子图状态。

流式输出子图输出

要将子图的输出包含在流式输出中,可以在父图的 .stream() 方法中设置 subgraphs=True。这将流式传输父图和任何子图的输出。

for chunk in graph.stream(
    {"foo": "foo"},
    subgraphs=True, # (1)!
    stream_mode="updates",
):
    print(chunk)
  1. 设置 subgraphs=True 以流式传输子图的输出。
从子图流式输出
from typing_extensions import TypedDict
from langgraph.graph.state import StateGraph, START

# 定义子图
class SubgraphState(TypedDict):
    foo: str
    bar: str

def subgraph_node_1(state: SubgraphState):
    return {"bar": "bar"}

def subgraph_node_2(state: SubgraphState):
    # 注意此节点正在使用仅在子图中可用的状态键 ('bar')
    # 并正在向共享状态键 ('foo') 发送更新
    return {"foo": state["foo"] + state["bar"]}

subgraph_builder = StateGraph(SubgraphState)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_node(subgraph_node_2)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph_builder.add_edge("subgraph_node_1", "subgraph_node_2")
subgraph = subgraph_builder.compile()

# 定义父图
class ParentState(TypedDict):
    foo: str

def node_1(state: ParentState):
    return {"foo": "hi! " + state["foo"]}

builder = StateGraph(ParentState)
builder.add_node("node_1", node_1)
builder.add_node("node_2", subgraph)
builder.add_edge(START, "node_1")
builder.add_edge("node_1", "node_2")
graph = builder.compile()

for chunk in graph.stream(
    {"foo": "foo"},
    stream_mode="updates",
    subgraphs=True, # (1)!
):
    print(chunk)
  1. 设置 subgraphs=True 以流式传输子图的输出。
((), {'node_1': {'foo': 'hi! foo'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_1': {'bar': 'bar'}})
(('node_2:e58e5673-a661-ebb0-70d4-e298a7fc28b7',), {'subgraph_node_2': {'foo': 'hi! foobar'}})
((), {'node_2': {'foo': 'hi! foobar'}})