添加和管理内存¶
AI 应用程序需要内存来在多次交互中共享上下文。在 LangGraph 中,您可以添加两种内存:
添加短期内存¶
短期内存(线程级别持久化)使代理能够跟踪多轮对话。要添加短期内存:
API Reference: InMemorySaver | StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph import StateGraph
checkpointer = InMemorySaver()
builder = StateGraph(...)
graph = builder.compile(checkpointer=checkpointer)
graph.invoke(
{"messages": [{"role": "user", "content": "hi! i am Bob"}]},
{"configurable": {"thread_id": "1"}},
)
在生产环境中使用¶
在生产环境中,请使用由数据库支持的检查点:
API Reference: PostgresSaver
from langgraph.checkpoint.postgres import PostgresSaver
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
builder = StateGraph(...)
graph = builder.compile(checkpointer=checkpointer)
示例:使用 Postgres 检查点
Setup
您需要调用 checkpointer.setup()
才能首次使用 Postgres 检查点。
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
# checkpointer.setup()
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres.aio import AsyncPostgresSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
async with AsyncPostgresSaver.from_conn_string(DB_URI) as checkpointer:
# await checkpointer.setup()
async def call_model(state: MessagesState):
response = await model.ainvoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
示例:使用 MongoDB 检查点
设置
要使用 MongoDB 检查点,您需要一个 MongoDB 集群。如果您还没有集群,请遵循此指南进行创建。
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.mongodb import MongoDBSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "localhost:27017"
with MongoDBSaver.from_conn_string(DB_URI) as checkpointer:
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.mongodb.aio import AsyncMongoDBSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "localhost:27017"
async with AsyncMongoDBSaver.from_conn_string(DB_URI) as checkpointer:
async def call_model(state: MessagesState):
response = await model.ainvoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
示例:使用 Redis 检查点
Setup
您需要调用 checkpointer.setup()
才能首次使用 Redis 检查点。
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "redis://localhost:6379"
with RedisSaver.from_conn_string(DB_URI) as checkpointer:
# checkpointer.setup()
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis.aio import AsyncRedisSaver
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "redis://localhost:6379"
async with AsyncRedisSaver.from_conn_string(DB_URI) as checkpointer:
# await checkpointer.asetup()
async def call_model(state: MessagesState):
response = await model.ainvoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {
"configurable": {
"thread_id": "1"
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
在子图中进行使用¶
如果您的图包含子图,您只需在编译父图时提供检查点。LangGraph 将自动将检查点传播到子图。
API Reference: START | StateGraph | InMemorySaver
from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from typing import TypedDict
class State(TypedDict):
foo: str
# 子图
def subgraph_node_1(state: State):
return {"foo": state["foo"] + "bar"}
subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()
# 父图
def node_1(state: State):
return {"foo": "hi! " + state["foo"]}
builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")
checkpointer = InMemorySaver()
graph = builder.compile(checkpointer=checkpointer)
如果您希望子图拥有自己的内存,则可以通过 with checkpointer=True
来编译它。这在多代理系统中很有用,如果您希望代理能够跟踪其内部消息历史记录。
在工具中读取短期内存¶
LangGraph 允许代理在工具中访问其短期内存(状态)。
API Reference: InjectedState | create_react_agent
from typing import Annotated
from langgraph.prebuilt import InjectedState, create_react_agent
class CustomState(AgentState):
user_id: str
def get_user_info(
state: Annotated[CustomState, InjectedState]
) -> str:
"""查找用户信息。"""
user_id = state["user_id"]
return "User is John Smith" if user_id == "user_123" else "Unknown user"
agent = create_react_agent(
model="anthropic:claude-3-7-sonnet-latest",
tools=[get_user_info],
state_schema=CustomState,
)
agent.invoke({
"messages": "look up user information",
"user_id": "user_123"
})
有关更多信息,请参阅上下文指南。
从工具中写入短期内存¶
要修改执行期间代理的短期内存(状态),您可以直接从工具返回状态更新。这对于持久化中间结果或使信息可供后续工具或提示访问非常有用。
API Reference: InjectedToolCallId | RunnableConfig | ToolMessage | InjectedState | create_react_agent | AgentState | Command
from typing import Annotated
from langchain_core.tools import InjectedToolCallId
from langchain_core.runnables import RunnableConfig
from langchain_core.messages import ToolMessage
from langgraph.prebuilt import InjectedState, create_react_agent
from langgraph.prebuilt.chat_agent_executor import AgentState
from langgraph.types import Command
class CustomState(AgentState):
user_name: str
def update_user_info(
tool_call_id: Annotated[str, InjectedToolCallId],
config: RunnableConfig
) -> Command:
"""查找并更新用户信息。"""
user_id = config["configurable"].get("user_id")
name = "John Smith" if user_id == "user_123" else "Unknown user"
return Command(update={
"user_name": name,
# 更新消息历史记录
"messages": [
ToolMessage(
"Successfully looked up user information",
tool_call_id=tool_call_id
)
]
})
def greet(
state: Annotated[CustomState, InjectedState]
) -> str:
"""在找到用户信息后使用此功能向用户致意。"""
user_name = state["user_name"]
return f"Hello {user_name}!"
agent = create_react_agent(
model="anthropic:claude-3-7-sonnet-latest",
tools=[update_user_info, greet],
state_schema=CustomState
)
agent.invoke(
{"messages": [{"role": "user", "content": "greet the user"}]},
config={"configurable": {"user_id": "user_123"}}
)
添加长期内存¶
使用长期内存来存储跨对话的用户特定或应用程序特定的数据。
API Reference: StateGraph
from langgraph.store.memory import InMemoryStore
from langgraph.graph import StateGraph
store = InMemoryStore()
builder = StateGraph(...)
graph = builder.compile(store=store)
在生产环境中使用¶
在生产环境中,请使用由数据库支持的存储:
from langgraph.store.postgres import PostgresStore
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresStore.from_conn_string(DB_URI) as store:
builder = StateGraph(...)
graph = builder.compile(store=store)
示例:使用 Postgres 存储
Setup
您需要调用 store.setup()
才能首次使用 Postgres 存储。
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver
from langgraph.store.postgres import PostgresStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with (
PostgresStore.from_conn_string(DB_URI) as store,
PostgresSaver.from_conn_string(DB_URI) as checkpointer,
):
# store.setup()
# checkpointer.setup()
def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = store.search(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# 如果用户要求模型记住,则存储新回忆
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
store.put(namespace, str(uuid.uuid4()), {"data": memory})
response = model.invoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres.aio import AsyncPostgresSaver
from langgraph.store.postgres.aio import AsyncPostgresStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
async with (
AsyncPostgresStore.from_conn_string(DB_URI) as store,
AsyncPostgresSaver.from_conn_string(DB_URI) as checkpointer,
):
# await store.setup()
# await checkpointer.setup()
async def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = await store.asearch(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# 如果用户要求模型记住,则存储新回忆
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
await store.aput(namespace, str(uuid.uuid4()), {"data": memory})
response = await model.ainvoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
示例:使用 Redis 存储
Setup
您需要调用 store.setup()
才能首次使用 Redis 存储。
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver
from langgraph.store.redis import RedisStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "redis://localhost:6379"
with (
RedisStore.from_conn_string(DB_URI) as store,
RedisSaver.from_conn_string(DB_URI) as checkpointer,
):
store.setup()
checkpointer.setup()
def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = store.search(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# 如果用户要求模型记住,则存储新回忆
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
store.put(namespace, str(uuid.uuid4()), {"data": memory})
response = model.invoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
for chunk in graph.stream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values",
):
chunk["messages"][-1].pretty_print()
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis.aio import AsyncRedisSaver
from langgraph.store.redis.aio import AsyncRedisStore
from langgraph.store.base import BaseStore
model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")
DB_URI = "redis://localhost:6379"
async with (
AsyncRedisStore.from_conn_string(DB_URI) as store,
AsyncRedisSaver.from_conn_string(DB_URI) as checkpointer,
):
# await store.setup()
# await checkpointer.asetup()
async def call_model(
state: MessagesState,
config: RunnableConfig,
*,
store: BaseStore,
):
user_id = config["configurable"]["user_id"]
namespace = ("memories", user_id)
memories = await store.asearch(namespace, query=str(state["messages"][-1].content))
info = "\n".join([d.value["data"] for d in memories])
system_msg = f"You are a helpful assistant talking to the user. User info: {info}"
# 如果用户要求模型记住,则存储新回忆
last_message = state["messages"][-1]
if "remember" in last_message.content.lower():
memory = "User name is Bob"
await store.aput(namespace, str(uuid.uuid4()), {"data": memory})
response = await model.ainvoke(
[{"role": "system", "content": system_msg}] + state["messages"]
)
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(
checkpointer=checkpointer,
store=store,
)
config = {
"configurable": {
"thread_id": "1",
"user_id": "1",
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
config = {
"configurable": {
"thread_id": "2",
"user_id": "1",
}
}
async for chunk in graph.astream(
{"messages": [{"role": "user", "content": "what is my name?"}]},
config,
stream_mode="values"
):
chunk["messages"][-1].pretty_print()
在工具中读取长期内存¶
from langchain_core.runnables import RunnableConfig
from langgraph.config import get_store
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore
store = InMemoryStore() # (1)!
store.put( # (2)!
("users",), # (3)!
"user_123", # (4)!
{
"name": "John Smith",
"language": "English",
} # (5)!
)
def get_user_info(config: RunnableConfig) -> str:
"""查找用户信息。"""
# 与传递给 `create_react_agent` 的内容相同
store = get_store() # (6)!
user_id = config["configurable"].get("user_id")
user_info = store.get(("users",), user_id) # (7)!
return str(user_info.value) if user_info else "Unknown user"
agent = create_react_agent(
model="anthropic:claude-3-7-sonnet-latest",
tools=[get_user_info],
store=store # (8)!
)
# 运行代理
agent.invoke(
{"messages": [{"role": "user", "content": "look up user information"}]},
config={"configurable": {"user_id": "user_123"}}
)
InMemoryStore
是一个将数据存储在内存中的存储。在生产环境中,您通常会使用数据库或其他持久化存储。请查阅存储文档以获取更多选项。如果您使用 LangGraph Platform 进行部署,平台将为您提供生产就绪的存储。- 在此示例中,我们使用
put
方法向存储写入一些示例数据。有关更多详细信息,请参阅BaseStore.put API 参考。 - 第一个参数是命名空间。它用于将相关数据分组在一起。在此示例中,我们使用
users
命名空间来分组用户数据。 - 命名空间内的键。此示例使用用户 ID 作为键。
- 我们要为给定用户存储的数据。
get_store
函数用于访问存储。您可以从代码中的任何位置(包括工具和提示)调用它。此函数返回创建代理时传递给代理的存储。get
方法用于从存储中检索数据。第一个参数是命名空间,第二个参数是键。这将返回一个StoreValue
对象,其中包含值和有关该值元数据。store
被传递给代理。这使代理能够在运行工具时访问存储。您也可以使用get_store
函数从代码中的任何位置访问存储。
从工具中写入长期内存¶
from typing_extensions import TypedDict
from langgraph.config import get_store
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore
store = InMemoryStore() # (1)!
class UserInfo(TypedDict): # (2)!
name: str
def save_user_info(user_info: UserInfo, config: RunnableConfig) -> str: # (3)!
"""保存用户信息。"""
# 与传递给 `create_react_agent` 的内容相同
store = get_store() # (4)!
user_id = config["configurable"].get("user_id")
store.put(("users",), user_id, user_info) # (5)!
return "Successfully saved user info."
agent = create_react_agent(
model="anthropic:claude-3-7-sonnet-latest",
tools=[save_user_info],
store=store
)
# 运行代理
agent.invoke(
{"messages": [{"role": "user", "content": "My name is John Smith"}]},
config={"configurable": {"user_id": "user_123"}} # (6)!
)
# 您可以直接访问存储以获取值
store.get(("users",), "user_123").value
InMemoryStore
是一个将数据存储在内存中的存储。在生产环境中,您通常会使用数据库或其他持久化存储。请查阅存储文档以获取更多选项。如果您使用 LangGraph Platform 进行部署,平台将为您提供生产就绪的存储。UserInfo
类是一个TypedDict
,它定义了用户信息的数据结构。LLM 将使用它根据架构格式化响应。save_user_info
函数是一个允许代理更新用户信息的工具。这对于聊天应用程序非常有用,用户可以在其中更新其个人资料信息。get_store
函数用于访问存储。您可以从代码中的任何位置(包括工具和提示)调用它。此函数返回创建代理时传递给代理的存储。put
方法用于将数据存储在存储中。第一个参数是命名空间,第二个参数是键。这将用户信息的存储在存储中。user_id
在配置中传递。它用于标识正在更新信息的哪个用户。
使用语义搜索¶
在图的内存存储中启用语义搜索,让图代理按语义相似性搜索存储中的项目。
API Reference: init_embeddings
from langchain.embeddings import init_embeddings
from langgraph.store.memory import InMemoryStore
# 创建启用了语义搜索的存储
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
index={
"embed": embeddings,
"dims": 1536,
}
)
store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})
items = store.search(
("user_123", "memories"), query="I'm hungry", limit=1
)
带有语义搜索的长期内存
from typing import Optional
from langchain.embeddings import init_embeddings
from langchain.chat_models import init_chat_model
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
from langgraph.graph import START, MessagesState, StateGraph
llm = init_chat_model("openai:gpt-4o-mini")
# 创建启用了语义搜索的存储
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
index={
"embed": embeddings,
"dims": 1536,
}
)
store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})
def chat(state, *, store: BaseStore):
# 根据用户的最后一条消息进行搜索
items = store.search(
("user_123", "memories"), query=state["messages"][-1].content, limit=2
)
memories = "\n".join(item.value["text"] for item in items)
memories = f"## Memories of user\n{memories}" if memories else ""
response = llm.invoke(
[
{"role": "system", "content": f"You are a helpful assistant.\n{memories}"},
*state["messages"],
]
)
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node(chat)
builder.add_edge(START, "chat")
graph = builder.compile(store=store)
for message, metadata in graph.stream(
input={"messages": [{"role": "user", "content": "I'm hungry"}]},
stream_mode="messages",
):
print(message.content, end="")
请参阅此指南以了解如何将语义搜索与 LangGraph 内存存储结合使用。
管理短期内存¶
通过启用短期内存,长对话可能会超出 LLM 的上下文窗口。常见解决方案包括:
- 截断消息:删除前 N 条或后 N 条消息(在调用 LLM 之前)
- 从 LangGraph 状态中删除消息以永久删除
- 摘要消息:汇总历史记录中的早期消息,并用摘要替换它们
- 管理检查点以存储和检索消息历史记录
- 自定义策略(例如,消息过滤等)
这使得代理能够在不超出 LLM 上下文窗口的情况下跟踪对话。
截断消息¶
大多数 LLM 都有一个最大支持的上下文窗口(以令牌为单位)。决定何时截断消息的一种方法是计算消息历史记录中的令牌数,并在每次接近该限制时进行截断。如果您使用的是 LangChain,您可以使用 trim_messages
实用程序并指定要从列表中保留的令牌数,以及用于处理边界的 strategy
(例如,保留最后 max_tokens
)。
要在代理中截断消息历史记录,请使用 pre_model_hook
和 trim_messages
函数:
from langchain_core.messages.utils import (
trim_messages,
count_tokens_approximately
)
from langgraph.prebuilt import create_react_agent
# 此函数将在每次调用 LLM 的节点之前被调用
def pre_model_hook(state):
trimmed_messages = trim_messages(
state["messages"],
strategy="last",
token_counter=count_tokens_approximately,
max_tokens=384,
start_on="human",
end_on=("human", "tool"),
)
return {"llm_input_messages": trimmed_messages}
checkpointer = InMemorySaver()
agent = create_react_agent(
model,
tools,
pre_model_hook=pre_model_hook,
checkpointer=checkpointer,
)
要截断消息历史记录,请使用 trim_messages
函数:
from langchain_core.messages.utils import (
trim_messages,
count_tokens_approximately
)
def call_model(state: MessagesState):
messages = trim_messages(
state["messages"],
strategy="last",
token_counter=count_tokens_approximately,
max_tokens=128,
start_on="human",
end_on=("human", "tool"),
)
response = model.invoke(messages)
return {"messages": [response]}
builder = StateGraph(MessagesState)
builder.add_node(call_model)
...
完整示例:截断消息
from langchain_core.messages.utils import (
trim_messages,
count_tokens_approximately
)
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, START, MessagesState
model = init_chat_model("anthropic:claude-3-7-sonnet-latest")
summarization_model = model.bind(max_tokens=128)
def call_model(state: MessagesState):
messages = trim_messages(
state["messages"],
strategy="last",
token_counter=count_tokens_approximately,
max_tokens=128,
start_on="human",
end_on=("human", "tool"),
)
response = model.invoke(messages)
return {"messages": [response]}
checkpointer = InMemorySaver()
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
删除消息¶
您可以从图状态中删除消息以管理消息历史记录。当您想要删除特定消息或清除整个消息历史记录时,这很有用。
要从图状态中删除消息,您可以使用 RemoveMessage
。为了使 RemoveMessage
起作用,您需要使用reducers的 add_messages
键,例如 MessagesState
。
要删除特定消息:
API Reference: RemoveMessage
from langchain_core.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# 删除最早的两条消息
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
要删除**所有**消息:
from langgraph.graph.message import REMOVE_ALL_MESSAGES
def delete_messages(state):
return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}
Warning
删除消息时,**请确保**生成的消息历史记录有效。检查您使用的 LLM 提供商的限制。例如:
- 某些提供商期望消息历史记录以
user
消息开头 - 大多数提供商要求包含工具调用的
assistant
消息后面跟着相应的tool
结果消息。
完整示例:删除消息
from langchain_core.messages import RemoveMessage
def delete_messages(state):
messages = state["messages"]
if len(messages) > 2:
# 删除最早的两条消息
return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}
def call_model(state: MessagesState):
response = model.invoke(state["messages"])
return {"messages": response}
builder = StateGraph(MessagesState)
builder.add_sequence([call_model, delete_messages])
builder.add_edge(START, "call_model")
checkpointer = InMemorySaver()
app = builder.compile(checkpointer=checkpointer)
for event in app.stream(
{"messages": [{"role": "user", "content": "hi! I'm bob"}]},
config,
stream_mode="values"
):
print([(message.type, message.content) for message in event["messages"]])
for event in app.stream(
{"messages": [{"role": "user", "content": "what's my name?"}]},
config,
stream_mode="values"
):
print([(message.type, message.content) for message in event["messages"]])
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?"), ('ai', 'Your name is Bob.')]
[('human', "what's my name?"), ('ai', 'Your name is Bob.')]
摘要消息¶
如上所示,截断或删除消息的问题是您可能会丢失消息队列中的信息。因此,一些应用程序受益于使用聊天模型汇总消息历史记录的更复杂的方法。
要在代理中汇总消息历史记录,请使用 pre_model_hook
和预先构建的 SummarizationNode
抽象:
from langchain_anthropic import ChatAnthropic
from langmem.short_term import SummarizationNode, RunningSummary
from langchain_core.messages.utils import count_tokens_approximately
from langgraph.prebuilt import create_react_agent
from langgraph.prebuilt.chat_agent_executor import AgentState
from langgraph.checkpoint.memory import InMemorySaver
from typing import Any
model = ChatAnthropic(model="claude-3-7-sonnet-latest")
summarization_node = SummarizationNode( # (1)!
token_counter=count_tokens_approximately,
model=model,
max_tokens=384,
max_summary_tokens=128,
output_messages_key="llm_input_messages",
)
class State(AgentState):
# 注意:我们添加此键以跟踪之前的摘要信息
# 以确保我们不会在每次 LLM 调用时都进行摘要
context: dict[str, RunningSummary] # (2)!
checkpointer = InMemorySaver() # (3)!
agent = create_react_agent(
model=model,
tools=tools,
pre_model_hook=summarization_node, # (4)!
state_schema=State, # (5)!
checkpointer=checkpointer,
)
InMemorySaver
是一个将代理状态存储在内存中的检查点。在生产环境中,您通常会使用数据库或其他持久化存储。请查阅检查点文档以获取更多选项。如果您使用 LangGraph Platform 进行部署,平台将为您提供生产就绪的检查点。context
键已添加到代理的状态中。该键包含用于摘要节点的簿记信息。它用于跟踪上次摘要信息,并确保代理不会在每次 LLM 调用时都进行摘要,这可能效率低下。checkpointer
已传递给代理。这使代理能够跨调用持久化其状态。pre_model_hook
设置为SummarizationNode
。此节点将在将消息历史记录发送到 LLM 之前对其进行汇总。摘要节点将自动处理汇总过程并使用新的摘要更新代理的状态。如果您愿意,可以替换为自定义实现。请参阅create_react_agent API 参考以获取更多详细信息。state_schema
设置为State
类,它是包含附加context
键的自定义状态。
可以使用提示和编排逻辑来汇总消息历史记录。例如,在 LangGraph 中,您可以扩展 MessagesState
以包含 summary
键:
然后,您可以生成聊天历史记录的摘要,使用任何现有摘要作为下一个摘要的上下文。当 messages
状态键中累积了一定数量的消息后,可以调用此 summarize_conversation
节点。
def summarize_conversation(state: State):
# 首先,我们获取现有的任何摘要
summary = state.get("summary", "")
# 创建我们的摘要提示
if summary:
# 已存在摘要
summary_message = (
f"这是到目前为止的对话摘要:{summary}\n\n"
"请考虑上述新消息来扩展摘要:"
)
else:
summary_message = "创建以上对话的摘要:"
# 将提示添加到我们的历史记录中
messages = state["messages"] + [HumanMessage(content=summary_message)]
response = model.invoke(messages)
# 删除除最后两条消息之外的所有消息
delete_messages = [RemoveMessage(id=m.id) for m in state["messages"][:-2]]
return {"summary": response.content, "messages": delete_messages}
完整示例:摘要消息
from typing import Any, TypedDict
from langchain.chat_models import init_chat_model
from langchain_core.messages import AnyMessage
from langchain_core.messages.utils import count_tokens_approximately
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.checkpoint.memory import InMemorySaver
from langmem.short_term import SummarizationNode, RunningSummary
model = init_chat_model("anthropic:claude-3-7-sonnet-latest")
summarization_model = model.bind(max_tokens=128)
class State(MessagesState):
context: dict[str, RunningSummary] # (1)!
class LLMInputState(TypedDict): # (2)!
summarized_messages: list[AnyMessage]
context: dict[str, RunningSummary]
summarization_node = SummarizationNode(
token_counter=count_tokens_approximately,
model=summarization_model,
max_tokens=256,
max_tokens_before_summary=256,
max_summary_tokens=128,
)
def call_model(state: LLMInputState): # (3)!
response = model.invoke(state["summarized_messages"])
return {"messages": [response]}
checkpointer = InMemorySaver()
builder = StateGraph(State)
builder.add_node(call_model)
builder.add_node("summarize", summarization_node)
builder.add_edge(START, "summarize")
builder.add_edge("summarize", "call_model")
graph = builder.compile(checkpointer=checkpointer)
# 调用图
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)
final_response["messages"][-1].pretty_print()
print("\nSummary:", final_response["context"]["running_summary"].summary)
- 我们将把运行摘要保存在
context
字段中 (由SummarizationNode
预期)。 - 定义仅用于过滤输入到
call_model
节点的私有状态。 - 我们在这里传递私有输入状态,以隔离摘要节点返回的消息。
================================== Ai Message ==================================
From our conversation, I can see that you introduced yourself as Bob. That's the name you shared with me when we began talking.
Summary: In this conversation, I was introduced to Bob, who then asked me to write a poem about cats. I composed a poem titled "The Mystery of Cats" that captured cats' graceful movements, independent nature, and their special relationship with humans. Bob then requested a similar poem about dogs, so I wrote "The Joy of Dogs," which highlighted dogs' loyalty, enthusiasm, and loving companionship. Both poems were written in a similar style but emphasized the distinct characteristics that make each pet special.
管理检查点¶
您可以查看和删除检查点存储的信息。
查看线程状态(检查点)¶
config = {
"configurable": {
"thread_id": "1",
# 可选地提供特定检查点的 ID,
# 否则将显示最新检查点
# "checkpoint_id": "1f029ca3-1f5b-6704-8004-820c16b69a5a"
}
}
graph.get_state(config)
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today?), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]}, next=(),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
metadata={
'source': 'loop',
'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}},
'step': 4,
'parents': {},
'thread_id': '1'
},
created_at='2025-05-05T16:01:24.680462+00:00',
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
tasks=(),
interrupts=()
)
config = {
"configurable": {
"thread_id": "1",
# 可选地提供特定检查点的 ID,
# 否则将显示最新检查点
# "checkpoint_id": "1f029ca3-1f5b-6704-8004-820c16b69a5a"
}
}
checkpointer.get_tuple(config)
CheckpointTuple(
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:24.680462+00:00',
'id': '1f029ca3-1f5b-6704-8004-820c16b69a5a',
'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'}, 'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
},
metadata={
'source': 'loop',
'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}},
'step': 4,
'parents': {},
'thread_id': '1'
},
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
pending_writes=[]
)
查看线程的检查点历史记录¶
[
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
next=(),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}}, 'step': 4, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:24.680462+00:00',
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
tasks=(),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?")]},
next=('call_model',),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
metadata={'source': 'loop', 'writes': None, 'step': 3, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.863421+00:00',
parent_config={...}
tasks=(PregelTask(id='8ab4155e-6b15-b885-9ce5-bed69a2c305c', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Your name is Bob.')}),),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
next=('__start__',),
config={...},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}}, 'step': 2, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.863173+00:00',
parent_config={...}
tasks=(PregelTask(id='24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "what's my name?"}]}),),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
next=(),
config={...},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}}, 'step': 1, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:23.862295+00:00',
parent_config={...}
tasks=(),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob")]},
next=('call_model',),
config={...},
metadata={'source': 'loop', 'writes': None, 'step': 0, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:22.278960+00:00',
parent_config={...}
tasks=(PregelTask(id='8cbd75e0-3720-b056-04f7-71ac805140a0', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}),),
interrupts=()
),
StateSnapshot(
values={'messages': [HumanMessage(content="hi! I'm bob")]},
next=(),
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565'}},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}, 'step': -1, 'parents': {}, 'thread_id': '1'},
created_at='2025-05-05T16:01:22.277497+00:00',
parent_config=None,
tasks=(PregelTask(id='d458367b-8265-812c-18e2-33001d199ce6', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}),),
interrupts=()
)
]
[
CheckpointTuple(
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:24.680462+00:00',
'id': '1f029ca3-1f5b-6704-8004-820c16b69a5a',
'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'}, 'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}}, 'step': 4, 'parents': {}, 'thread_id': '1'},
parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
pending_writes=[]
),
CheckpointTuple(
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:23.863421+00:00',
'id': '1f029ca3-1790-6b0a-8003-baf965b6a38f',
'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'},
'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?")], 'branch:to:call_model': None}
},
metadata={'source': 'loop', 'writes': None, 'step': 3, 'parents': {}, 'thread_id': '1'},
parent_config={...},
pending_writes=[('8ab4155e-6b15-b885-9ce5-bed69a2c305c', 'messages', AIMessage(content='Your name is Bob.'))]
),
CheckpointTuple(
config={...},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:23.863173+00:00',
'id': '1f029ca3-1790-616e-8002-9e021694a0cd',
'channel_versions': {'__start__': '00000000000000000000000000000004.0.5736472536395331', 'messages': '00000000000000000000000000000003.0.7056767754077798', 'branch:to:call_model': '00000000000000000000000000000003.0.22059023329132854'},
'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'}},
'channel_values': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}, 'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]}
},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}}, 'step': 2, 'parents': {}, 'thread_id': '1'},
parent_config={...},
pending_writes=[('24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', 'messages', [{'role': 'user', 'content': "what's my name?"}]), ('24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', 'branch:to:call_model', None)]
),
CheckpointTuple(
config={...},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:23.862295+00:00',
'id': '1f029ca3-178d-6f54-8001-d7b180db0c89',
'channel_versions': {'__start__': '00000000000000000000000000000002.0.18673090920108737', 'messages': '00000000000000000000000000000003.0.7056767754077798', 'branch:to:call_model': '00000000000000000000000000000003.0.22059023329132854'},
'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'}},
'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]}
},
metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}}, 'step': 1, 'parents': {}, 'thread_id': '1'},
parent_config={...},
pending_writes=[]
),
CheckpointTuple(
config={...},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:22.278960+00:00',
'id': '1f029ca3-0874-6612-8000-339f2abc83b1',
'channel_versions': {'__start__': '00000000000000000000000000000002.0.18673090920108737', 'messages': '00000000000000000000000000000002.0.30296526818059655', 'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'},
'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}},
'channel_values': {'messages': [HumanMessage(content="hi! I'm bob")], 'branch:to:call_model': None}
},
metadata={'source': 'loop', 'writes': None, 'step': 0, 'parents': {}, 'thread_id': '1'},
parent_config={...},
pending_writes=[('8cbd75e0-3720-b056-04f7-71ac805140a0', 'messages', AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'))]
),
CheckpointTuple(
config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565'}},
checkpoint={
'v': 3,
'ts': '2025-05-05T16:01:22.277497+00:00',
'id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565',
'channel_versions': {'__start__': '00000000000000000000000000000001.0.7040775356287469'},
'versions_seen': {'__input__': {}},
'channel_values': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}
},
metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}, 'step': -1, 'parents': {}, 'thread_id': '1'},
parent_config=None,
pending_writes=[('d458367b-8265-812c-18e2-33001d199ce6', 'messages', [{'role': 'user', 'content': "hi! I'm bob"}]), ('d458367b-8265-812c-18e2-33001d199ce6', 'branch:to:call_model', None)]
)
]
删除线程的所有检查点¶
预构建内存工具¶
LangMem 是 LangChain 维护的一个库,它提供了在代理中管理长期内存的工具。请参阅LangMem 文档以获取使用示例。