Skip to main content
Open In ColabOpen on GitHub

从 RefineDocumentsChain 进行迁移

RefineDocumentsChain 实现了一种分析长文本的策略。该策略如下:

  • 将文本分割成更小的文档;
  • 应用一个流程到第一个文档;
  • 根据下一个文档精炼或更新结果;
  • 重复整个文档序列直至完成。

在此场景下一种常见的应用是摘要生成,其中一个运行中的摘要会随着我们处理长文本的各个部分而修改。这对于比给定 LLM 的上下文窗口大得多的文本特别有用。

LangGraph 的实现为此问题带来了许多优势:

  • RefineDocumentsChain 在类的内部通过 for 循环精炼摘要,而 LangGraph 的实现允许您逐步执行以监控或根据需要进行引导。
  • LangGraph 的实现支持执行步骤和单个 token 的流式传输。
  • 由于它是从模块化组件组装而成的,因此也易于扩展或修改(例如,集成 工具调用 或其他行为)。

下面我们将通过一个简单的示例来分别介绍 RefineDocumentsChain 和相应的 LangGraph 实现,以作说明。

首先加载一个聊天模型:

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.0-flash", model_provider="google_genai")

示例

让我们通过一个例子来学习如何总结一系列文档。首先,我们生成一些简单的文档用于说明:

from langchain_core.documents import Document

documents = [
Document(page_content="Apples are red", metadata={"title": "apple_book"}),
Document(page_content="Blueberries are blue", metadata={"title": "blueberry_book"}),
Document(page_content="Bananas are yelow", metadata={"title": "banana_book"}),
]
API Reference:Document

遗留实现

Details

下面我们展示了使用 RefineDocumentsChain 的实现。我们定义了初始摘要和后续改进的提示模板,为这两个目的实例化了单独的 LLMChain 对象,并使用这些组件实例化 RefineDocumentsChain

from langchain.chains import LLMChain, RefineDocumentsChain
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_openai import ChatOpenAI

# This controls how each document will be formatted. Specifically,
# it will be passed to `format_document` - see that function for more
# details.
document_prompt = PromptTemplate(
input_variables=["page_content"], template="{page_content}"
)
document_variable_name = "context"
# The prompt here should take as an input variable the
# `document_variable_name`
summarize_prompt = ChatPromptTemplate(
[
("human", "Write a concise summary of the following: {context}"),
]
)
initial_llm_chain = LLMChain(llm=llm, prompt=summarize_prompt)
initial_response_name = "existing_answer"
# The prompt here should take as an input variable the
# `document_variable_name` as well as `initial_response_name`
refine_template = """
Produce a final summary.

Existing summary up to this point:
{existing_answer}

New context:
------------
{context}
------------

Given the new context, refine the original summary.
"""
refine_prompt = ChatPromptTemplate([("human", refine_template)])
refine_llm_chain = LLMChain(llm=llm, prompt=refine_prompt)
chain = RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,
document_prompt=document_prompt,
document_variable_name=document_variable_name,
initial_response_name=initial_response_name,
)

现在我们可以调用我们的链了:

result = chain.invoke(documents)
result["output_text"]
'Apples are typically red in color, blueberries are blue, and bananas are yellow.'

LangSmith 追踪 由三个 LLM 调用组成:一个用于生成初始摘要,另外两次用于更新该摘要。当我们使用最终文档的内容更新摘要时,该过程即告完成。

LangGraph

Details

下面我们展示了该流程的 LangGraph 实现:

  • 我们使用与之前相同的两个模板。
  • 我们生成一个简单的链来处理初始摘要,该链会提取第一个文档,将其格式化为提示,并使用我们的 LLM 运行推理。
  • 我们生成第二个 refine_summary_chain,该链对每个后续文档进行操作,以完善初始摘要。

我们需要安装 langgraph

pip install -qU langgraph
import operator
from typing import List, Literal, TypedDict

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig
from langchain_openai import ChatOpenAI
from langgraph.constants import Send
from langgraph.graph import END, START, StateGraph

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)

# Initial summary
summarize_prompt = ChatPromptTemplate(
[
("human", "Write a concise summary of the following: {context}"),
]
)
initial_summary_chain = summarize_prompt | llm | StrOutputParser()

# Refining the summary with new docs
refine_template = """
Produce a final summary.

Existing summary up to this point:
{existing_answer}

New context:
------------
{context}
------------

Given the new context, refine the original summary.
"""
refine_prompt = ChatPromptTemplate([("human", refine_template)])

refine_summary_chain = refine_prompt | llm | StrOutputParser()


# For LangGraph, we will define the state of the graph to hold the query,
# destination, and final answer.
class State(TypedDict):
contents: List[str]
index: int
summary: str


# We define functions for each node, including a node that generates
# the initial summary:
async def generate_initial_summary(state: State, config: RunnableConfig):
summary = await initial_summary_chain.ainvoke(
state["contents"][0],
config,
)
return {"summary": summary, "index": 1}


# And a node that refines the summary based on the next document
async def refine_summary(state: State, config: RunnableConfig):
content = state["contents"][state["index"]]
summary = await refine_summary_chain.ainvoke(
{"existing_answer": state["summary"], "context": content},
config,
)

return {"summary": summary, "index": state["index"] + 1}


# Here we implement logic to either exit the application or refine
# the summary.
def should_refine(state: State) -> Literal["refine_summary", END]:
if state["index"] >= len(state["contents"]):
return END
else:
return "refine_summary"


graph = StateGraph(State)
graph.add_node("generate_initial_summary", generate_initial_summary)
graph.add_node("refine_summary", refine_summary)

graph.add_edge(START, "generate_initial_summary")
graph.add_conditional_edges("generate_initial_summary", should_refine)
graph.add_conditional_edges("refine_summary", should_refine)
app = graph.compile()
from IPython.display import Image

Image(app.get_graph().draw_mermaid_png())

我们可以按如下方式逐步执行,并在每次提炼时打印出摘要:

async for step in app.astream(
{"contents": [doc.page_content for doc in documents]},
stream_mode="values",
):
if summary := step.get("summary"):
print(summary)
Apples are typically red in color.
Apples are typically red in color, while blueberries are blue.
Apples are typically red in color, blueberries are blue, and bananas are yellow.

LangSmith trace 中,我们再次获得了三次 LLM 调用,它们执行的功能与之前相同。

请注意,我们可以从应用程序流式传输 token,包括来自中间步骤的 token:

async for event in app.astream_events(
{"contents": [doc.page_content for doc in documents]}, version="v2"
):
kind = event["event"]
if kind == "on_chat_model_stream":
content = event["data"]["chunk"].content
if content:
print(content, end="|")
elif kind == "on_chat_model_end":
print("\n\n")
Ap|ples| are| characterized| by| their| red| color|.|


Ap|ples| are| characterized| by| their| red| color|,| while| blueberries| are| known| for| their| blue| hue|.|


Ap|ples| are| characterized| by| their| red| color|,| blueberries| are| known| for| their| blue| hue|,| and| bananas| are| recognized| for| their| yellow| color|.|

下一步

请参阅 此教程 了解更多基于 LLM 的摘要策略。

请查看 LangGraph 文档 了解使用 LangGraph 构建的详细信息。