Skip to main content
Open In ColabOpen on GitHub

Redis 向量存储

本笔记本介绍如何开始使用 Redis 向量存储。

Redis 是一个流行的开源内存数据结构存储,可用作数据库、缓存、消息代理和队列。它现在包含了向量相似性搜索功能,使其适合用作向量存储。

Redis 是什么?

大多数开发者都熟悉 Redis。其核心是一个属于键值对家族的 NoSQL 数据库,可以作为缓存、消息队列、流处理和主数据库使用。开发者选择 Redis 是因为它速度快,拥有大量的客户端库生态系统,并且已被大型企业部署多年。

除了这些传统用例之外,Redis 还提供了诸如搜索和查询等附加功能,允许用户在 Redis 中创建二级索引结构。这使得 Redis 能够成为一个向量数据库,并拥有缓存般的速度。

Redis 作为向量数据库

Redis 使用压缩的倒排索引,以便以低的内存占用快速索引。它还支持许多高级功能,例如:

  • 索引 Redis 哈希和 JSON 中的多个字段
  • 向量相似性搜索(使用 HNSW (ANN) 或 FLAT (KNN))
  • 向量范围搜索(例如,查找查询向量半径内的所有向量)
  • 在不损失性能的情况下进行增量索引
  • 文档排名(使用 tf-idf,可选用户提供的权重)
  • 字段加权
  • 使用 ANDORNOT 操作符的复杂布尔查询
  • 前缀匹配、模糊匹配和精确短语查询
  • 支持 double-metaphone 音译匹配
  • 自动完成建议(支持模糊前缀建议)
  • 基于词干的查询扩展(支持 多种语言)(使用 Snowball
  • 支持中文分词和查询(使用 Friso
  • 数字过滤器和范围
  • 使用 Redis 地理空间索引进行地理空间搜索
  • 功能强大的聚合引擎
  • 支持所有 utf-8 编码的文本
  • 检索完整文档、选定字段或仅文档 ID
  • 结果排序(例如,按创建日期)

客户端

由于 Redis 不仅仅是一个向量数据库,因此经常会有一些用例需要使用 LangChain 集成之外的 Redis 客户端。您可以使用任何标准的 Redis 客户端库来运行搜索和查询命令,但最简单的方法是使用封装了搜索和查询 API 的库。以下是一些示例,您可以在 此处 找到更多客户端库。

项目语言许可证作者星标
jedisJavaMITRedisStars
redisvlPythonMITRedisStars
redis-pyPythonMITRedisStars
node-redisNode.jsMITRedisStars
nredisstack.NETMITRedisStars

部署选项

有许多方法可以部署带有 RediSearch 的 Redis。最简单的入门方法是使用 Docker,但还有许多其他的部署选项,例如:

Redis 连接 URL 模式

有效的 Redis URL 模式为:

  1. redis:// - 连接到独立的 Redis,未加密
  2. rediss:// - 连接到独立的 Redis,使用 TLS 加密
  3. redis+sentinel:// - 通过 Redis Sentinel 连接到 Redis 服务器,未加密
  4. rediss+sentinel:// - 通过 Redis Sentinel 连接到 Redis 服务器,两种连接均使用 TLS 加密

有关其他连接参数的更多信息,请参阅 redis-py 文档

设置

要使用 RedisVectorStore,您需要安装 langchain-redis 合作包,以及本 notebook 中使用的其他包。

%pip install -qU langchain-redis langchain-huggingface sentence-transformers scikit-learn
Note: you may need to restart the kernel to use updated packages.

凭证

Redis 连接凭证作为 Redis 连接 URL 的一部分传递。Redis 连接 URL 非常灵活,可以适应各种 Redis 服务器的拓扑结构和身份验证方法。这些 URL 遵循特定的格式,其中包括连接协议、身份验证详细信息、主机、端口和数据库信息。 Redis 连接 URL 的基本结构是:

[protocol]://[auth]@[host]:[port]/[database]

其中:

  • protocol 可以是 redis(用于标准连接)、rediss(用于 SSL/TLS 连接)或 redis+sentinel(用于 Sentinel 连接)。
  • auth 包括用户名和密码(如果适用)。
  • host 是 Redis 服务器的主机名或 IP 地址。
  • port 是 Redis 服务器的端口。
  • database 是 Redis 数据库编号。

Redis 连接 URL 支持各种配置,包括:

  • 独立的 Redis 服务器(有或无身份验证)
  • Redis Sentinel 设置
  • SSL/TLS 加密连接
  • 不同的身份验证方法(仅密码或用户名-密码)

以下是不同配置的 Redis 连接 URL 示例:

# connection to redis standalone at localhost, db 0, no password
redis_url = "redis://localhost:6379"
# connection to host "redis" port 7379 with db 2 and password "secret" (old style authentication scheme without username / pre 6.x)
redis_url = "redis://:secret@redis:7379/2"
# connection to host redis on default port with user "joe", pass "secret" using redis version 6+ ACLs
redis_url = "redis://joe:secret@redis/0"

# connection to sentinel at localhost with default group mymaster and db 0, no password
redis_url = "redis+sentinel://localhost:26379"
# connection to sentinel at host redis with default port 26379 and user "joe" with password "secret" with default group mymaster and db 0
redis_url = "redis+sentinel://joe:secret@redis"
# connection to sentinel, no auth with sentinel monitoring group "zone-1" and database 2
redis_url = "redis+sentinel://redis:26379/zone-1/2"

# connection to redis standalone at localhost, db 0, no password but with TLS support
redis_url = "rediss://localhost:6379"
# connection to redis sentinel at localhost and default port, db 0, no password
# but with TLS support for both Sentinel and Redis server
redis_url = "rediss+sentinel://localhost"

使用 Docker 启动 Redis 实例

要将 Redis 与 LangChain 结合使用,您需要一个正在运行的 Redis 实例。您可以使用 Docker 启动一个,命令如下:

docker run -d -p 6379:6379 redis/redis-stack:latest

在本示例中,我们将使用本地 Redis 实例。如果您使用的是远程实例,则需要相应地修改 Redis URL。

import os

REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379")
print(f"Connecting to Redis at: {REDIS_URL}")
Connecting to Redis at: redis://redis:6379

要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

让我们通过 ping 通 Redis 来检查它是否已启动并正在运行:

import redis

redis_client = redis.from_url(REDIS_URL)
redis_client.ping()
True

示例数据

20 newsgroups 数据集包含大约 18000 篇关于 20 个主题的新闻帖子。本次演示我们将使用其中一部分,并专注于两个类别:“alt.atheism”(非神论)和“sci.space”(空间科学):

from langchain.docstore.document import Document
from sklearn.datasets import fetch_20newsgroups

categories = ["alt.atheism", "sci.space"]
newsgroups = fetch_20newsgroups(
subset="train", categories=categories, shuffle=True, random_state=42
)

# Use only the first 250 documents
texts = newsgroups.data[:250]
metadata = [
{"category": newsgroups.target_names[target]} for target in newsgroups.target[:250]
]

len(texts)
API Reference:Document
250

初始化

RedisVectorStore 实例可以通过几种方式进行初始化:

  • RedisVectorStore.__init__ - 直接初始化
  • RedisVectorStore.from_texts - 从文本列表(可选含元数据)初始化
  • RedisVectorStore.from_documents - 从 langchain_core.documents.Document 对象列表初始化
  • RedisVectorStore.from_existing_index - 从现有的 Redis 索引初始化

下面我们将使用 RedisConfig 实例通过 RedisVectorStore.__init__ 方法进行初始化。

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

我们将使用 SentenceTransformer 模型来创建嵌入。此模型在本地运行,无需 API 密钥。

from langchain_redis import RedisConfig, RedisVectorStore

config = RedisConfig(
index_name="newsgroups",
redis_url=REDIS_URL,
metadata_schema=[
{"name": "category", "type": "tag"},
],
)

vector_store = RedisVectorStore(embeddings, config=config)

管理向量库

向向量库添加条目

ids = vector_store.add_texts(texts, metadata)

print(ids[0:10])
['newsgroups:f1e788ee61fe410daa8ef941dd166223', 'newsgroups:80b39032181f4299a359a9aaed6e2401', 'newsgroups:99a3efc1883647afba53d115b49e6e92', 'newsgroups:503a6c07cd71418eb71e11b42589efd7', 'newsgroups:7351210e32d1427bbb3c7426cf93a44f', 'newsgroups:4e79fdf67abe471b8ee98ba0e8a1a055', 'newsgroups:03559a1d574e4f9ca0479d7b3891402e', 'newsgroups:9a1c2a7879b8409a805db72feac03580', 'newsgroups:3578a1e129f5435f9743cf803413f37a', 'newsgroups:9f68baf4d6b04f1683d6b871ce8ad92d']

让我们检查第一个文档:

texts[0], metadata[0]
('From: bil@okcforum.osrhe.edu (Bill Conner)\nSubject: Re: Not the Omni!\nNntp-Posting-Host: okcforum.osrhe.edu\nOrganization: Okcforum Unix Users Group\nX-Newsreader: TIN [version 1.1 PL6]\nLines: 18\n\nCharley Wingate (mangoe@cs.umd.edu) wrote:\n: \n: >> Please enlighten me.  How is omnipotence contradictory?\n: \n: >By definition, all that can occur in the universe is governed by the rules\n: >of nature. Thus god cannot break them. Anything that god does must be allowed\n: >in the rules somewhere. Therefore, omnipotence CANNOT exist! It contradicts\n: >the rules of nature.\n: \n: Obviously, an omnipotent god can change the rules.\n\nWhen you say, "By definition", what exactly is being defined;\ncertainly not omnipotence. You seem to be saying that the "rules of\nnature" are pre-existent somehow, that they not only define nature but\nactually cause it. If that\'s what you mean I\'d like to hear your\nfurther thoughts on the question.\n\nBill\n',
{'category': 'alt.atheism'})

从向量存储中删除项目

# Delete documents by passing one or more keys/ids
vector_store.index.drop_keys(ids[0])
1

检查已创建的索引

创建 Redis VectorStore 对象后,如果索引尚不存在,Redis 中便会创建一个索引。可以使用 rvlredis-cli 命令行工具来检查索引。如果上方已安装 redisvl,则可以使用 rvl 命令行工具来检查索引。

# assumes you're running Redis locally (use --host, --port, --password, --username, to change this)
!rvl index listall --port 6379
17:54:50 [RedisVL] INFO   Using Redis address from environment variable, REDIS_URL
17:54:50 [RedisVL] INFO Indices:
17:54:50 [RedisVL] INFO 1. newsgroups

Redis VectorStore 实现将尝试为通过 from_textsfrom_texts_return_keysfrom_documents 方法传递的任何元数据生成索引模式(用于过滤的字段)。这样,传递的任何元数据都将被索引到 Redis 搜索索引中,从而允许对这些字段进行过滤。

下面我们展示了从上面定义的元数据创建的字段

!rvl index info -i newsgroups --port 6379
17:54:50 [RedisVL] INFO   Using Redis address from environment variable, REDIS_URL


Index Information:
╭──────────────┬────────────────┬────────────────┬─────────────────┬────────────╮
│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │
├──────────────┼────────────────┼────────────────┼─────────────────┼────────────┤
│ newsgroups │ HASH │ ['newsgroups'] │ [] │ 0 │
╰──────────────┴────────────────┴────────────────┴─────────────────┴────────────╯
Index Fields:
╭───────────┬─────────────┬────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬────────────────┬─────────────────┬────────────────╮
│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │
├───────────┼─────────────┼────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼────────────────┼─────────────────┼────────────────┤
│ text │ text │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │
│ embedding │ embedding │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 768 │ distance_metric │ COSINE │
│ category │ category │ TAG │ SEPARATOR │ | │ │ │ │ │ │ │
╰───────────┴─────────────┴────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴────────────────┴─────────────────┴────────────────╯
!rvl stats -i newsgroups --port 6379
17:54:51 [RedisVL] INFO   Using Redis address from environment variable, REDIS_URL

Statistics:
╭─────────────────────────────┬────────────╮
│ Stat Key │ Value │
├─────────────────────────────┼────────────┤
│ num_docs │ 249 │
│ num_terms │ 16178 │
│ max_doc_id │ 250 │
│ num_records │ 50394 │
│ percent_indexed │ 1 │
│ hash_indexing_failures │ 0 │
│ number_of_uses │ 2 │
│ bytes_per_record_avg │ 38.2743 │
│ doc_table_size_mb │ 0.0263586 │
│ inverted_sz_mb │ 1.83944 │
│ key_table_size_mb │ 0.00932026 │
│ offset_bits_per_record_avg │ 10.6699 │
│ offset_vectors_sz_mb │ 0.089057 │
│ offsets_per_term_avg │ 1.38937 │
│ records_per_doc_avg │ 202.386 │
│ sortable_values_size_mb │ 0 │
│ total_indexing_time │ 72.444 │
│ total_inverted_index_blocks │ 16207 │
│ vector_index_sz_mb │ 3.01776 │
╰─────────────────────────────┴────────────╯

查询向量存储

在创建向量存储并添加了相关文档后,您很可能希望在链或代理运行时对其进行查询。

直接查询

可以按如下方式执行简单的相似性搜索:

query = "Tell me about space exploration"
results = vector_store.similarity_search(query, k=2)

print("Simple Similarity Search Results:")
for doc in results:
print(f"Content: {doc.page_content[:100]}...")
print(f"Metadata: {doc.metadata}")
print()
Simple Similarity Search Results:
Content: From: aa429@freenet.carleton.ca (Terry Ford)
Subject: A flawed propulsion system: Space Shuttle
X-Ad...
Metadata: {'category': 'sci.space'}

Content: From: nsmca@aurora.alaska.edu
Subject: Space Design Movies?
Article-I.D.: aurora.1993Apr23.124722.1
...
Metadata: {'category': 'sci.space'}

如果您想执行相似性搜索并获得相应的得分,可以运行:

# Similarity search with score and filter
scored_results = vector_store.similarity_search_with_score(query, k=2)

print("Similarity Search with Score Results:")
for doc, score in scored_results:
print(f"Content: {doc.page_content[:100]}...")
print(f"Metadata: {doc.metadata}")
print(f"Score: {score}")
print()
Similarity Search with Score Results:
Content: From: aa429@freenet.carleton.ca (Terry Ford)
Subject: A flawed propulsion system: Space Shuttle
X-Ad...
Metadata: {'category': 'sci.space'}
Score: 0.569670975208

Content: From: nsmca@aurora.alaska.edu
Subject: Space Design Movies?
Article-I.D.: aurora.1993Apr23.124722.1
...
Metadata: {'category': 'sci.space'}
Score: 0.590400338173

按此转换为检索器

您也可以将向量存储转换为检索器,以便在您的链中更轻松地使用。

retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 2})
retriever.invoke("What planet in the solar system has the largest number of moons?")
[Document(metadata={'category': 'sci.space'}, page_content='Subject: Re: Comet in Temporary Orbit Around Jupiter?\nFrom: Robert Coe <bob@1776.COM>\nDistribution: world\nOrganization: 1776 Enterprises, Sudbury MA\nLines: 23\n\njgarland@kean.ucs.mun.ca writes:\n\n> >> Also, perihelions of Gehrels3 were:\n> >> \n> >> April  1973     83 jupiter radii\n> >> August 1970     ~3 jupiter radii\n> > \n> > Where 1 Jupiter radius = 71,000 km = 44,000 mi = 0.0005 AU.  So the\n> > 1970 figure seems unlikely to actually be anything but a perijove.\n> > Is that the case for the 1973 figure as well?\n> > -- \n> Sorry, _perijoves_...I\'m not used to talking this language.\n\nHmmmm....  The prefix "peri-" is Greek, not Latin, so it\'s usually used\nwith the Greek form of the name of the body being orbited.  (That\'s why\nit\'s "perihelion" rather than "perisol", "perigee" rather than "periterr",\nand "pericynthion" rather than "perilune".)  So for Jupiter I\'d expect it\nto be something like "perizeon".)   :^)\n\n   ___            _                                           -  Bob\n   /__) _   /    / ) _   _\n(_/__) (_)_(_)  (___(_)_(/_______________________________________ bob@1776.COM\nRobert K. Coe ** 14 Churchill St, Sudbury, Massachusetts 01776 ** 508-443-3265\n'),
Document(metadata={'category': 'sci.space'}, page_content='From: pyron@skndiv.dseg.ti.com (Dillon Pyron)\nSubject: Re: Why not give $1 billion to first year-long moon residents?\nLines: 42\nNntp-Posting-Host: skndiv.dseg.ti.com\nReply-To: pyron@skndiv.dseg.ti.com\nOrganization: TI/DSEG VAX Support\n\n\nIn article <1qve4kINNpas@sal-sun121.usc.edu>, schaefer@sal-sun121.usc.edu (Peter Schaefer) writes:\n>In article <1993Apr19.130503.1@aurora.alaska.edu>, nsmca@aurora.alaska.edu writes:\n>|> In article <6ZV82B2w165w@theporch.raider.net>, gene@theporch.raider.net (Gene Wright) writes:\n>|> > With the continuin talk about the "End of the Space Age" and complaints \n>|> > by government over the large cost, why not try something I read about \n>|> > that might just work.\n>|> > \n>|> > Announce that a reward of $1 billion would go to the first corporation \n>|> > who successfully keeps at least 1 person alive on the moon for a year. \n>|> > Then you\'d see some of the inexpensive but not popular technologies begin \n>|> > to be developed. THere\'d be a different kind of space race then!\n>|> > \n>|> > --\n>|> > gene@theporch.raider.net (Gene Wright)\n>|> > theporch.raider.net 615/297-7951 The MacInteresteds of Nashville\n>|> ====\n>|> If that were true, I\'d go for it.. I have a few friends who we could pool our\n>|> resources and do it.. Maybe make it a prize kind of liek the "Solar Car Race"\n>|> in Australia..\n>|> Anybody game for a contest!\n>|> \n>|> ==\n>|> Michael Adams, nsmca@acad3.alaska.edu -- I\'m not high, just jacked\n>\n>\n>Oh gee, a billion dollars! That\'d be just about enough to cover the cost of the\n>feasability study! Happy, Happy, JOY! JOY!\n>\n\nFeasability study?? What a wimp!! While you are studying, others would be\ndoing. Too damn many engineers doing way too little engineering.\n\n"He who sits on his arse sits on his fortune" - Sir Richard Francis Burton\n--\nDillon Pyron | The opinions expressed are those of the\nTI/DSEG Lewisville VAX Support | sender unless otherwise stated.\n(214)462-3556 (when I\'m here) |\n(214)492-4656 (when I\'m home) |Texans: Vote NO on Robin Hood. We need\npyron@skndiv.dseg.ti.com |solutions, not gestures.\nPADI DM-54909 |\n\n')]

用于检索增强生成 (Retrieval-Augmented Generation) 的用法

如需了解如何将此向量存储用于检索增强生成 (RAG) 的指南,请参阅以下章节:

Redis 特有功能

Redis 为向量搜索提供了一些独特的功能:

相似性搜索与元数据过滤

我们可以根据元数据来过滤搜索结果:

from redisvl.query.filter import Tag

query = "Tell me about space exploration"

# Create a RedisVL filter expression
filter_condition = Tag("category") == "sci.space"

filtered_results = vector_store.similarity_search(query, k=2, filter=filter_condition)

print("Filtered Similarity Search Results:")
for doc in filtered_results:
print(f"Content: {doc.page_content[:100]}...")
print(f"Metadata: {doc.metadata}")
print()
Filtered Similarity Search Results:
Content: From: aa429@freenet.carleton.ca (Terry Ford)
Subject: A flawed propulsion system: Space Shuttle
X-Ad...
Metadata: {'category': 'sci.space'}

Content: From: nsmca@aurora.alaska.edu
Subject: Space Design Movies?
Article-I.D.: aurora.1993Apr23.124722.1
...
Metadata: {'category': 'sci.space'}

最大化边际相关性搜索

最大化边际相关性搜索有助于获得多样化的结果:

# Maximum marginal relevance search with filter
mmr_results = vector_store.max_marginal_relevance_search(
query, k=2, fetch_k=10, filter=filter_condition
)

print("Maximum Marginal Relevance Search Results:")
for doc in mmr_results:
print(f"Content: {doc.page_content[:100]}...")
print(f"Metadata: {doc.metadata}")
print()
Maximum Marginal Relevance Search Results:
Content: From: aa429@freenet.carleton.ca (Terry Ford)
Subject: A flawed propulsion system: Space Shuttle
X-Ad...
Metadata: {'category': 'sci.space'}

Content: From: moroney@world.std.com (Michael Moroney)
Subject: Re: Vulcan? (No, not the guy with the ears!)
...
Metadata: {'category': 'sci.space'}

Chain 用法

下面的代码展示了如何在简单的 RAG chain 中将向量存储用作检索器:

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.0-flash", model_provider="google_genai")
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough

# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"""You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:""",
),
]
)


def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)


rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)

rag_chain.invoke("Describe the Space Shuttle program?")
'The Space Shuttle program was a NASA initiative that enabled reusable spacecraft to transport astronauts and cargo to and from low Earth orbit. It conducted a variety of missions, including satellite deployment, scientific research, and assembly of the International Space Station, and typically carried a crew of five astronauts. Although it achieved many successes, the program faced criticism for its safety concerns and the complexity of its propulsion system.'

连接到现有索引

为了在 Redis VectorStore 中索引相同的元数据,您需要传入相同的 index_schema,它可以是一个 yaml 文件的路径,也可以是一个字典。以下展示了如何从现有索引中获取 schema 并连接到它。

# write the schema to a yaml file
vector_store.index.schema.to_yaml("redis_schema.yaml")
# now we can connect to our existing index as follows

new_rdvs = RedisVectorStore(
embeddings,
redis_url=REDIS_URL,
schema_path="redis_schema.yaml",
)

results = new_rdvs.similarity_search("Space Shuttle Propulsion System", k=3)
print(results[0])
18:19:58 redisvl.index.index INFO   Index already exists, not overwriting.
page_content='From: aa429@freenet.carleton.ca (Terry Ford)
Subject: A flawed propulsion system: Space Shuttle
X-Added: Forwarded by Space Digest
Organization: [via International Space University]
Original-Sender: isu@VACATION.VENARI.CS.CMU.EDU
Distribution: sci
Lines: 13



For an essay, I am writing about the space shuttle and a need for a better
propulsion system. Through research, I have found that it is rather clumsy
(i.e. all the checks/tests before launch), the safety hazards ("sitting
on a hydrogen bomb"), etc.. If you have any beefs about the current
space shuttle program Re: propulsion, please send me your ideas.

Thanks a lot.

--
Terry Ford [aa429@freenet.carleton.ca]
Nepean, Ontario, Canada.
' metadata={'category': 'sci.space'}
# compare the two schemas to verify they are the same
new_rdvs.index.schema == vector_store.index.schema
True

清理向量数据库

# Clear vector store
vector_store.index.delete(drop=True)

API 参考

如需了解 RedisVectorStore 的所有功能和配置的详细文档,请访问 API 参考:https://python.langchain.com/api_reference/redis/vectorstores/langchain_redis.vectorstores.RedisVectorStore.html