Pinecone
Pinecone 是一个功能丰富的向量数据库。
本 Notebook 展示了如何使用与 PineconeVectorStore 向量数据库相关的功能。
设置
要使用 PineconeVectorStore,您首先需要安装相应的包,以及本 Notebook 中将要使用的其他包。
pip install -qU langchain langchain-pinecone langchain-openai
迁移注意事项:如果您正在从 langchain_community.vectorstores 迁移 Pinecone 实现,您可能需要在安装依赖于 pinecone-client v6 的 langchain-pinecone 之前,移除 pinecone-client v2 依赖。
凭证
创建一个新的 Pinecone 账户,或登录您现有的账户,并创建一个 API 密钥以供在此笔记本中使用。
import getpass
import os
from pinecone import Pinecone
if not os.getenv("PINECONE_API_KEY"):
os.environ["PINECONE_API_KEY"] = getpass.getpass("Enter your Pinecone API key: ")
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=pinecone_api_key)
如果您想自动跟踪模型的调用,还可以通过取消注释以下行来设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
初始化
在初始化向量存储之前,让我们先连接到 Pinecone 索引。如果名为 index_name 的索引不存在,它将被创建。
from pinecone import ServerlessSpec
index_name = "langchain-test-index" # change if desired
if not pc.has_index(index_name):
pc.create_index(
name=index_name,
dimension=1536,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
index = pc.Index(index_name)
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
API Reference:OpenAIEmbeddings
from langchain_pinecone import PineconeVectorStore
vector_store = PineconeVectorStore(index=index, embedding=embeddings)
API Reference:PineconeVectorStore
管理向量存储
创建完向量存储后,我们可以通过添加和删除不同的项与其进行交互。
向向量存储添加项
我们可以使用 add_documents 函数向向量存储添加项。
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
API Reference:Document
从向量存储中删除项目
vector_store.delete(ids=[uuids[-1]])
查询向量存储
一旦创建了向量存储并将相关文档添加进去,在运行你的链或代理的过程中,你很可能希望对其进行查询。
直接查询
执行简单的相似性搜索可以按以下方式完成:
results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
filter={"source": "tweet"},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
相似度搜索(含分数)
您也可以使用分数进行搜索:
results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, filter={"source": "news"}
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
其他搜索方法
本笔记本中未列出更多搜索方法(例如 MMR),要查找所有这些方法,请务必阅读 API 参考。
通过转换为检索器进行查询
您还可以将向量存储转换为检索器,以便在链中更轻松地使用。
retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 1, "score_threshold": 0.4},
)
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})