Skip to main content
Open In ColabOpen on GitHub

Google BigQuery 向量搜索

Google Cloud BigQuery 向量搜索 可让您使用 GoogleSQL 进行语义搜索,使用向量索引获得快速的近似结果,或使用暴力搜索获得精确结果。

本教程将介绍如何在 LangChain 中处理端到端数据和嵌入管理系统,并通过 BigQueryVectorStore 类在 BigQuery 中提供可扩展的语义搜索。此类是能够为 Google Cloud 提供统一数据存储和灵活向量搜索的 2 个类的一部分:

  • BigQuery 向量搜索: 使用 BigQueryVectorStore 类,非常适合无需基础设施设置即可进行快速原型设计和批量检索。
  • Feature Store Online Store: 使用 VertexFSVectorStore 类,通过手动或计划数据同步实现低延迟检索。非常适合生产就绪的用户面向的 GenAI 应用程序。

![Diagram BQ-VertexFS]( QgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAp1FEBG3lP3WwBwQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQh0FgEi5o93QQAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAACEEAE3G84qQAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAGQQUQ5lB/gGgkAAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBCyKADJmjhXhCAAAQgAAEIQAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfRQg4t9/J4kBBCAAAQhAAAIQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBCyKADJmjhXhCAAAQgAAEIQAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACDQQi5vbv/5K7xSghAAAIQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQYARCM7vU7AEAAAhCAAAQgAAEIqaA0I/tXJ1hXEQAAEIQAACEIAABCAAAQhAAAIQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAELoKACY+P3b4kAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBCyKADJn4M0EAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDooAQ2M7vPXBAAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBCyKADJmjhXhCAAAQgAAEIQAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfRAg5t9/J4kBBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACLJCAkmgUEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAAAEWjIAiZu9PntwQAIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhAAAEWRIMgZa6tB6wIAAIMAAAEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQXAQIcu593hQkAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCHRRgJCzK//jDQkAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQyC4C5+b4VncMQAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIACBWRAgytlj7YIAAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACCEAAAsYkIMjYyQIAAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCCQcgIEOWd83BQUAAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAARyKICDnJnu0hIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgMAIECDLO+a+rAAIIIIAAAggggAACCCCQTQQQ5fzfAwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABCDQYgQ5a3zXDlwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABCCRAgIy/bJ8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCLAEHM8XvLBAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJQ/AYKcpe+YUCMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMggQJAzAw6zEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg9AkQ5Cx9x4QaIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBABgGCnBlwmIUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAqVPgCBn6Tsm1AgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDIIkCQM4GCH1hFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyJUj4XvrXbCYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfgQIMj9R7cDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfQoQ5G8m7w0AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCIBAhylYhW1RAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgQoAU5Cyx2DAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACfQQIMjfTd2nDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACXQkQ5G8m7w0AAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCIBAhylYhW1RAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgECFClhG854cAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABCCSB5Ajkf//xjQIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMoDAf832r+87kIAAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAS6DAg52/f2rAAACAAAAAAAAAAAAAElFTkU5//fA/gAAAAAAABJRU5ErkJggg==)

入门

安装库

%pip install --upgrade --quiet  langchain langchain-google-vertexai "langchain-google-community[featurestore]"

为了在此 Jupyter运行时中使用新安装的软件包,您必须重启运行时。您可以通过运行下面的单元格来完成此操作,这将重启当前的内核。

import IPython

app = IPython.Application.instance()
app.kernel.do_shutdown(True)

开始之前

设置您的项目 ID

如果您不知道您的项目 ID,请尝试以下方法:

  • 运行 gcloud config list
  • 运行 gcloud projects list
  • 查看支持页面:查找项目 ID
PROJECT_ID = ""  # @param {type:"string"}

# Set the project id
! gcloud config set project {PROJECT_ID}

设置区域

您还可以更改 BigQuery 使用的 REGION 变量。 了解更多关于 BigQuery 区域 的信息。

REGION = "us-central1"  # @param {type: "string"}

设置数据集和表名

它们将是您的 BigQuery 向量商店。

DATASET = "my_langchain_dataset"  # @param {type: "string"}
TABLE = "doc_and_vectors" # @param {type: "string"}

验证你的笔记本环境

# from google.colab import auth as google_auth

# google_auth.authenticate_user()

Demo: BigQueryVectorStore

创建 embedding 类实例

您可能需要在项目中启用 Vertex AI API,方法是运行 gcloud services enable aiplatform.googleapis.com --project {PROJECT_ID} (将 {PROJECT_ID} 替换为您的项目名称)。

您可以使用任何 LangChain 文本嵌入模型

from langchain_google_vertexai import VertexAIEmbeddings

embedding = VertexAIEmbeddings(
model_name="textembedding-gecko@latest", project=PROJECT_ID
)
API Reference:VertexAIEmbeddings

初始化 BigQueryVectorStore

如果 BigQuery 数据集和表不存在,将会被自动创建。更多可选参数请参见此处的类定义:here

from langchain_google_community import BigQueryVectorStore

store = BigQueryVectorStore(
project_id=PROJECT_ID,
dataset_name=DATASET,
table_name=TABLE,
location=REGION,
embedding=embedding,
)
API Reference:BigQueryVectorStore

添加文本

all_texts = ["Apples and oranges", "Cars and airplanes", "Pineapple", "Train", "Banana"]
metadatas = [{"len": len(t)} for t in all_texts]

store.add_texts(all_texts, metadatas=metadatas)

搜索文档

query = "I'd like a fruit."
docs = store.similarity_search(query)
print(docs)

按向量搜索文档

query_vector = embedding.embed_query(query)
docs = store.similarity_search_by_vector(query_vector, k=2)
print(docs)

使用元数据过滤器搜索文档

向量存储支持两种在执行文档搜索时应用元数据字段过滤器的方法:

  • 基于字典的过滤器
    • 您可以传递一个字典(dict),其中键代表元数据字段,值指定过滤条件。此方法在键和相应值之间应用相等性过滤器。当提供多个键值对时,它们将通过逻辑 AND 操作组合。
  • 基于 SQL 的过滤器
    • 或者,您可以提供一个表示 SQL WHERE 子句的字符串来定义更复杂的过滤条件。这提供了更大的灵活性,支持诸如比较运算符和逻辑运算符之类的 SQL 表达式。了解更多关于 BigQuery 运算符的信息。
# Dictionary-based Filters
# This should only return "Banana" document.
docs = store.similarity_search_by_vector(query_vector, filter={"len": 6})
print(docs)
# SQL-based Filters
# This should return "Banana", "Apples and oranges" and "Cars and airplanes" documents.
docs = store.similarity_search_by_vector(query_vector, filter="len = 6 AND len > 17")
print(docs)

批量搜索

BigQueryVectorStore 提供了 batch_search 方法,用于可扩展的向量相似性搜索。

results = store.batch_search(
embeddings=None, # can pass embeddings or
queries=["search_query", "search_query"], # can pass queries
)

添加带有嵌入的文本

您也可以使用 add_texts_with_embeddings 方法添加自己的嵌入。 这对于可能需要自定义预处理才能生成嵌入的多模态数据特别有用。

items = ["some text"]
embs = embedding.embed(items)

ids = store.add_texts_with_embeddings(
texts=["some text"], embs=embs, metadatas=[{"len": 1}]
)

使用 Feature Store 实现低延迟服务

您只需使用 .to_vertex_fs_vector_store() 方法即可获取 VertexFSVectorStore 对象,该对象为在线用例提供低延迟服务。所有强制性参数将自动从现有的 BigQueryVectorStore 类传输。有关您可以使用所有其他参数的信息,请参阅类定义

使用 .to_bq_vector_store() 方法可以轻松地移回 BigQueryVectorStore。

store.to_vertex_fs_vector_store()  # pass optional VertexFSVectorStore parameters as arguments