ClickHouse
ClickHouse 是最快、资源效率最高的开源数据库,适用于实时应用程序和分析,提供完整的 SQL 支持以及广泛的函数,可协助用户编写分析性查询。最近添加的数据结构和距离搜索函数(如
L2Distance)以及近似最近邻搜索索引 使 ClickHouse 能够用作高性能、可扩展的向量数据库,以 SQL 的方式存储和搜索向量。
本笔记本展示了如何使用与 ClickHouse 向量存储相关的功能。
设置
首先使用 docker 设置本地 clickhouse服务器:
! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:24.7.6.8
您需要安装 langchain-community 和 clickhouse-connect 才能使用此集成
pip install -qU langchain-community clickhouse-connect
凭据
此Notebook无需凭据,只需确保已安装上述软件包。
如果你希望获得一流的自动化模型调用跟踪,也可以通过取消注释以下内容来设置你的 LangSmith API 密钥:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
实例化
Select embeddings model:
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from langchain_community.vectorstores import Clickhouse, ClickhouseSettings
settings = ClickhouseSettings(table="clickhouse_example")
vector_store = Clickhouse(embeddings, config=settings)
API Reference:Clickhouse | ClickhouseSettings
管理向量存储
创建向量存储后,我们可以通过添加和删除不同的项目与其进行交互。
向向量存储添加项目
我们可以使用 add_documents 函数向向量存储添加项目。
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
API Reference:Document
从向量存储中删除项 目
我们可以使用 delete 函数通过 ID 从向量存储中删除项目。
vector_store.delete(ids=uuids[-1])