ChatSeekrFlow
Seekr provides AI-powered solutions for structured, explainable, and transparent AI interactions.
This notebook provides a quick overview for getting started with Seekr chat models. For detailed documentation of all ChatSeekrFlow features and configurations, head to the API reference.
Overview
ChatSeekrFlow class wraps a chat model endpoint hosted on SeekrFlow, enabling seamless integration with LangChain applications.
Integration Details
| Class | Package | Local | Serializable | Package downloads | Package latest |
|---|---|---|---|---|---|
| ChatSeekrFlow | seekrai | ❌ | beta |
Model Features
| Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
|---|---|---|---|---|---|---|---|---|---|
| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
Supported Methods
ChatSeekrFlow supports all methods of ChatModel, except async APIs.
Endpoint Requirements
The serving endpoint ChatSeekrFlow wraps must have OpenAI-compatible chat input/output format. It can be used for:
- Fine-tuned Seekr models
- Custom SeekrFlow models
- RAG-enabled models using Seekr's retrieval system
For async usage, please refer to AsyncChatSeekrFlow (coming soon).
LangChain 入门:使用 ChatSeekrFlow
本 Notebook 将介绍如何在 LangChain 中使用 SeekrFlow 作为聊天模型。
设置
确保已安装必要的依赖项:
pip install seekrai langchain langchain-community
您还必须拥有 Seekr 的 API 密钥才能进行身份验证请求。
# Standard library
import getpass
import os
# Third-party
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage
from langchain_core.runnables import RunnableSequence
# OSS SeekrFlow integration
from langchain_seekrflow import ChatSeekrFlow
from seekrai import SeekrFlow
API 密钥设置
您需要将 API 密钥设置为环境变量以进行身份验证。
运行下面的单元格。
或者在运行查询之前手动分配:
SEEKR_API_KEY = "your-api-key-here"
os.environ["SEEKR_API_KEY"] = getpass.getpass("Enter your Seekr API key:")
实例化
os.environ["SEEKR_API_KEY"]
seekr_client = SeekrFlow(api_key=SEEKR_API_KEY)
llm = ChatSeekrFlow(
client=seekr_client, model_name="meta-llama/Meta-Llama-3-8B-Instruct"
)
调用
response = llm.invoke([HumanMessage(content="Hello, Seekr!")])
print(response.content)
Hello there! I'm Seekr, nice to meet you! What brings you here today? Do you have a question, or are you looking for some help with something? I'm all ears (or rather, all text)!
链式调用
prompt = ChatPromptTemplate.from_template("Translate to French: {text}")
chain: RunnableSequence = prompt | llm
result = chain.invoke({"text": "Good morning"})
print(result)
content='The translation of "Good morning" in French is:\n\n"Bonne journée"' additional_kwargs={} response_metadata={}
def test_stream():
"""Test synchronous invocation in streaming mode."""
print("\n🔹 Testing Sync `stream()` (Streaming)...")
for chunk in llm.stream([HumanMessage(content="Write me a haiku.")]):
print(chunk.content, end="", flush=True)
# ✅ Ensure streaming is enabled
llm = ChatSeekrFlow(
client=seekr_client,
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
streaming=True, # ✅ Enable streaming
)
# ✅ Run sync streaming test
test_stream()
🔹 Testing Sync `stream()` (Streaming)...
Here is a haiku:
Golden sunset fades
Ripples on the quiet lake
Peaceful evening sky
错误处理与调试
This guide is for developers who want to implement
# Define a minimal mock SeekrFlow client
class MockSeekrClient:
"""Mock SeekrFlow API client that mimics the real API structure."""
class MockChat:
"""Mock Chat object with a completions method."""
class MockCompletions:
"""Mock Completions object with a create method."""
def create(self, *args, **kwargs):
return {
"choices": [{"message": {"content": "Mock response"}}]
} # Mimic API response
completions = MockCompletions()
chat = MockChat()
def test_initialization_errors():
"""Test that invalid ChatSeekrFlow initializations raise expected errors."""
test_cases = [
{
"name": "Missing Client",
"args": {"client": None, "model_name": "seekrflow-model"},
"expected_error": "SeekrFlow client cannot be None.",
},
{
"name": "Missing Model Name",
"args": {"client": MockSeekrClient(), "model_name": ""},
"expected_error": "A valid model name must be provided.",
},
]
for test in test_cases:
try:
print(f"Running test: {test['name']}")
faulty_llm = ChatSeekrFlow(**test["args"])
# If no error is raised, fail the test
print(f"❌ Test '{test['name']}' failed: No error was raised!")
except Exception as e:
error_msg = str(e)
assert test["expected_error"] in error_msg, f"Unexpected error: {error_msg}"
print(f"✅ Expected Error: {error_msg}")
# Run test
test_initialization_errors()
Running test: Missing Client
✅ Expected Error: SeekrFlow client cannot be None.
Running test: Missing Model Name
✅ Expected Error: A valid model name must be provided.
API 参考
ChatSeekrFlow类:langchain_seekrflow.ChatSeekrFlow- PyPI 包:
langchain-seekrflow
Related
- Chat model conceptual guide
- Chat model how-to guides