Skip to main content
Open In ColabOpen on GitHub

ChatHuggingFace

这将帮助您开始使用 langchain_huggingface chat 模型。有关 ChatHuggingFace 所有功能和配置的详细文档,请前往 API 参考。要查看 Hugging Face 支持的模型列表,请访问 此页面

概览

集成详情

集成详情

本地可序列化JS 支持包下载包最新
ChatHuggingFacelangchain-huggingfacebetaPyPI - DownloadsPyPI - Version

模型功能

工具调用结构化输出JSON 模式图像输入音频输入视频输入Token 级流式传输原生异步Token 使用量Logprobs

设置

要访问 Hugging Face 模型,您需要创建 Hugging Face 账户、获取 API 密钥,并安装 langchain-huggingface 集成包。

凭证

生成一个 Hugging Face 访问令牌,并将其作为环境变量 HUGGINGFACEHUB_API_TOKEN 存储。

import getpass
import os

if not os.getenv("HUGGINGFACEHUB_API_TOKEN"):
os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass("Enter your token: ")

安装

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatHuggingFacelangchain_huggingfacePyPI - DownloadsPyPI - Version

模型特性

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs

设置

要访问 langchain_huggingface 模型,您需要创建一个 Hugging Face 账户,获取 API 密钥,并安装 langchain_huggingface 集成包。

凭证

您需要将 Hugging Face Access Token 保存为环境变量:HUGGINGFACEHUB_API_TOKEN

import getpass
import os

os.environ["HUGGINGFACEHUB_API_TOKEN"] = getpass.getpass(
"Enter your Hugging Face API key: "
)
%pip install --upgrade --quiet  langchain-huggingface text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2 bitsandbytes accelerate

[notice] A new release of pip is available: 24.0 -> 24.1.2
[notice] To update, run: pip install --upgrade pip
Note: you may need to restart the kernel to use updated packages.

实例化

你可以通过两种方式实例化一个 ChatHuggingFace 模型:从 HuggingFaceEndpoint 实例化,或者从 HuggingFacePipeline 实例化。

HuggingFaceEndpoint

from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
repo_id="deepseek-ai/DeepSeek-R1-0528",
task="text-generation",
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
provider="auto", # let Hugging Face choose the best provider for you
)

chat_model = ChatHuggingFace(llm=llm)
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: fineGrained).
Your token has been saved to /Users/isaachershenson/.cache/huggingface/token
Login successful

现在,让我们利用 Inference Providers 在特定的第三方提供商处运行模型

llm = HuggingFaceEndpoint(
repo_id="deepseek-ai/DeepSeek-R1-0528",
task="text-generation",
provider="hyperbolic", # set your provider here
# provider="nebius",
# provider="together",
)

chat_model = ChatHuggingFace(llm=llm)

HuggingFacePipeline

from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline

llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
),
)

chat_model = ChatHuggingFace(llm=llm)
config.json:   0%|          | 0.00/638 [00:00<?, ?B/s]
model.safetensors.index.json:   0%|          | 0.00/23.9k [00:00<?, ?B/s]
Downloading shards:   0%|          | 0/8 [00:00<?, ?it/s]
model-00001-of-00008.safetensors:   0%|          | 0.00/1.89G [00:00<?, ?B/s]
model-00002-of-00008.safetensors:   0%|          | 0.00/1.95G [00:00<?, ?B/s]
model-00003-of-00008.safetensors:   0%|          | 0.00/1.98G [00:00<?, ?B/s]
model-00004-of-00008.safetensors:   0%|          | 0.00/1.95G [00:00<?, ?B/s]
model-00005-of-00008.safetensors:   0%|          | 0.00/1.98G [00:00<?, ?B/s]
model-00006-of-00008.safetensors:   0%|          | 0.00/1.95G [00:00<?, ?B/s]
model-00007-of-00008.safetensors:   0%|          | 0.00/1.98G [00:00<?, ?B/s]
model-00008-of-00008.safetensors:   0%|          | 0.00/816M [00:00<?, ?B/s]
Loading checkpoint shards:   0%|          | 0/8 [00:00<?, ?it/s]
generation_config.json:   0%|          | 0.00/111 [00:00<?, ?B/s]

实例化与量化

要运行模型的量化版本,可以按如下方式指定 bitsandbytes 的量化配置:

from transformers import BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)

并将其作为 model_kwargs 的一部分传递给 HuggingFacePipeline

llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs=dict(
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
return_full_text=False,
),
model_kwargs={"quantization_config": quantization_config},
)

chat_model = ChatHuggingFace(llm=llm)

调用

from langchain_core.messages import (
HumanMessage,
SystemMessage,
)

messages = [
SystemMessage(content="You're a helpful assistant"),
HumanMessage(
content="What happens when an unstoppable force meets an immovable object?"
),
]

ai_msg = chat_model.invoke(messages)
API Reference:HumanMessage | SystemMessage
print(ai_msg.content)
According to the popular phrase and hypothetical scenario, when an unstoppable force meets an immovable object, a paradoxical situation arises as both forces are seemingly contradictory. On one hand, an unstoppable force is an entity that cannot be stopped or prevented from moving forward, while on the other hand, an immovable object is something that cannot be moved or displaced from its position. 

In this scenario, it is un

API 参考

有关 ChatHuggingFace 所有功能和配置的详细文档,请访问 API参考:https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html

API 参考

如需了解 ChatHuggingFace 所有功能和配置的详细文档,请访问 API 参考:https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html