Skip to main content
Open In ColabOpen on GitHub

如何对 CSV 文件进行问答

大语言模型非常适合构建各种数据源的问答系统。在本节中,我们将介绍如何构建针对存储在 CSV 文件中的数据的问答系统。与处理 SQL 数据库一样,处理 CSV 文件的关键是让大语言模型能够访问查询和交互数据的工具。主要有两种方法可以实现这一点:

  • 推荐方法:将 CSV 文件加载到 SQL 数据库中,并使用 SQL 教程 中概述的方法。
  • 让大语言模型访问一个 Python 环境,它可以在其中使用 Pandas 等库与数据进行交互。

本指南将涵盖这两种方法。

⚠️ 安全说明 ⚠️

上述两种方法都存在重大风险。使用 SQL 需要执行模型生成的 SQL 查询。使用像 Pandas 这样的库需要允许模型执行 Python 代码。由于严格限制 SQL 连接权限和清理 SQL 查询比隔离 Python 环境更容易,我们强烈建议通过 SQL 与 CSV 数据进行交互。 有关通用安全最佳实践的更多信息,请参见此处

设置

本指南的依赖项:

%pip install -qU langchain langchain-openai langchain-community langchain-experimental pandas

设置必需的环境变量:

# Using LangSmith is recommended but not required. Uncomment below lines to use.
# import os
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

下载 泰坦尼克号数据集,如果您还没有的话:

!wget https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv -O titanic.csv
import pandas as pd

df = pd.read_csv("titanic.csv")
print(df.shape)
print(df.columns.tolist())
(887, 8)
['Survived', 'Pclass', 'Name', 'Sex', 'Age', 'Siblings/Spouses Aboard', 'Parents/Children Aboard', 'Fare']

SQL

使用 SQL 与 CSV 数据进行交互是推荐的方法,因为与任意 Python 相比,它可以更轻松地限制权限和清理查询。

大多数 SQL 数据库都可以轻松地将 CSV 文件加载为表(例如 DuckDBSQLite 等)。完成此操作后,您就可以使用 SQL 教程 中概述的所有链和代理创建技术。以下是我们如何使用 SQLite 实现这一目标的简要示例:

from langchain_community.utilities import SQLDatabase
from sqlalchemy import create_engine

engine = create_engine("sqlite:///titanic.db")
df.to_sql("titanic", engine, index=False)
API Reference:SQLDatabase
887
db = SQLDatabase(engine=engine)
print(db.dialect)
print(db.get_usable_table_names())
print(db.run("SELECT * FROM titanic WHERE Age < 2;"))
sqlite
['titanic']
[(1, 2, 'Master. Alden Gates Caldwell', 'male', 0.83, 0, 2, 29.0), (0, 3, 'Master. Eino Viljami Panula', 'male', 1.0, 4, 1, 39.6875), (1, 3, 'Miss. Eleanor Ileen Johnson', 'female', 1.0, 1, 1, 11.1333), (1, 2, 'Master. Richard F Becker', 'male', 1.0, 2, 1, 39.0), (1, 1, 'Master. Hudson Trevor Allison', 'male', 0.92, 1, 2, 151.55), (1, 3, 'Miss. Maria Nakid', 'female', 1.0, 0, 2, 15.7417), (0, 3, 'Master. Sidney Leonard Goodwin', 'male', 1.0, 5, 2, 46.9), (1, 3, 'Miss. Helene Barbara Baclini', 'female', 0.75, 2, 1, 19.2583), (1, 3, 'Miss. Eugenie Baclini', 'female', 0.75, 2, 1, 19.2583), (1, 2, 'Master. Viljo Hamalainen', 'male', 0.67, 1, 1, 14.5), (1, 3, 'Master. Bertram Vere Dean', 'male', 1.0, 1, 2, 20.575), (1, 3, 'Master. Assad Alexander Thomas', 'male', 0.42, 0, 1, 8.5167), (1, 2, 'Master. Andre Mallet', 'male', 1.0, 0, 2, 37.0042), (1, 2, 'Master. George Sibley Richards', 'male', 0.83, 1, 1, 18.75)]

然后创建一个SQL 代理来与之交互:

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.0-flash", model_provider="google_genai")
from langchain_community.agent_toolkits import create_sql_agent

agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True)
API Reference:create_sql_agent
agent_executor.invoke({"input": "what's the average age of survivors"})


> Entering new SQL Agent Executor chain...

Invoking: `sql_db_list_tables` with `{}`


titanic
Invoking: `sql_db_schema` with `{'table_names': 'titanic'}`



CREATE TABLE titanic (
"Survived" BIGINT,
"Pclass" BIGINT,
"Name" TEXT,
"Sex" TEXT,
"Age" FLOAT,
"Siblings/Spouses Aboard" BIGINT,
"Parents/Children Aboard" BIGINT,
"Fare" FLOAT
)

/*
3 rows from titanic table:
Survived Pclass Name Sex Age Siblings/Spouses Aboard Parents/Children Aboard Fare
0 3 Mr. Owen Harris Braund male 22.0 1 0 7.25
1 1 Mrs. John Bradley (Florence Briggs Thayer) Cumings female 38.0 1 0 71.2833
1 3 Miss. Laina Heikkinen female 26.0 0 0 7.925
*/
Invoking: `sql_db_query` with `{'query': 'SELECT AVG(Age) AS Average_Age FROM titanic WHERE Survived = 1'}`


[(28.408391812865496,)]The average age of survivors in the Titanic dataset is approximately 28.41 years.

> Finished chain.
{'input': "what's the average age of survivors",
'output': 'The average age of survivors in the Titanic dataset is approximately 28.41 years.'}

这种方法很容易推广到多个 CSV 文件,因为我们可以将每个 CSV 文件加载到我们的数据库中,并将其作为自己的表。请参阅下面的 多个 CSV 文件 部分。

Pandas

除了 SQL 之外,我们还可以使用 pandas 等数据分析库,并借助 LLM 的代码生成能力来与 CSV 数据进行交互。再次强调,除非有完善的安全措施,否则此方法不适用于生产环境。因此,我们的代码执行工具和构造函数位于 langchain-experimental 包中。

Chain

大多数 LLM 都经过了足够多的 pandas Python 代码训练,因此它们可以通过简单的指令生成代码:

ai_msg = llm.invoke(
"I have a pandas DataFrame 'df' with columns 'Age' and 'Fare'. Write code to compute the correlation between the two columns. Return Markdown for a Python code snippet and nothing else."
)
print(ai_msg.content)
\`\`\`python
correlation = df['Age'].corr(df['Fare'])
correlation
\`\`\`

我们可以将此能力与一个执行 Python 的工具结合起来,创建一个简单的数据分析链。我们首先希望将 CSV 表加载为数据框,并赋予该工具对该数据框的访问权限:

import pandas as pd
from langchain_core.prompts import ChatPromptTemplate
from langchain_experimental.tools import PythonAstREPLTool

df = pd.read_csv("titanic.csv")
tool = PythonAstREPLTool(locals={"df": df})
tool.invoke("df['Fare'].mean()")
32.30542018038331

为了确保正确使用我们的 Python 工具,我们将使用 工具调用

llm_with_tools = llm.bind_tools([tool], tool_choice=tool.name)
response = llm_with_tools.invoke(
"I have a dataframe 'df' and want to know the correlation between the 'Age' and 'Fare' columns"
)
response
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_SBrK246yUbdnJemXFC8Iod05', 'function': {'arguments': '{"query":"df.corr()[\'Age\'][\'Fare\']"}', 'name': 'python_repl_ast'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 125, 'total_tokens': 138}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_3b956da36b', 'finish_reason': 'stop', 'logprobs': None}, id='run-1fd332ba-fa72-4351-8182-d464e7368311-0', tool_calls=[{'name': 'python_repl_ast', 'args': {'query': "df.corr()['Age']['Fare']"}, 'id': 'call_SBrK246yUbdnJemXFC8Iod05'}])
response.tool_calls
[{'name': 'python_repl_ast',
'args': {'query': "df.corr()['Age']['Fare']"},
'id': 'call_SBrK246yUbdnJemXFC8Iod05'}]

我们将添加一个工具输出解析器来将函数调用提取为字典:

from langchain_core.output_parsers.openai_tools import JsonOutputKeyToolsParser

parser = JsonOutputKeyToolsParser(key_name=tool.name, first_tool_only=True)
(llm_with_tools | parser).invoke(
"I have a dataframe 'df' and want to know the correlation between the 'Age' and 'Fare' columns"
)
{'query': "df[['Age', 'Fare']].corr()"}

并结合一个 prompt,这样我们就只需要指定一个问题,而无需在每次调用时指定 dataframe 信息:

system = f"""You have access to a pandas dataframe `df`. \
Here is the output of `df.head().to_markdown()`:

\`\`\`
{df.head().to_markdown()}
\`\`\`

Given a user question, write the Python code to answer it. \
Return ONLY the valid Python code and nothing else. \
Don't assume you have access to any libraries other than built-in Python ones and pandas."""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
code_chain = prompt | llm_with_tools | parser
code_chain.invoke({"question": "What's the correlation between age and fare"})
{'query': "df[['Age', 'Fare']].corr()"}

最后,我们将添加我们的 Python 工具,以便实际执行生成的代码:

chain = prompt | llm_with_tools | parser | tool
chain.invoke({"question": "What's the correlation between age and fare"})
0.11232863699941621

就这样,我们有了一个简单的数据分析链。我们可以通过查看 LangSmith 跟踪来了解中间步骤:https://smith.langchain.com/public/b1309290-7212-49b7-bde2-75b39a32b49a/r

我们可以在最后添加一个额外的 LLM 调用来生成对话式响应,这样我们就不仅仅是用工具输出来回应。为此,我们想在提示中添加一个聊天历史记录 MessagesPlaceholder

from operator import itemgetter

from langchain_core.messages import ToolMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough

system = f"""You have access to a pandas dataframe `df`. \
Here is the output of `df.head().to_markdown()`:

\`\`\`
{df.head().to_markdown()}
\`\`\`

Given a user question, write the Python code to answer it. \
Don't assume you have access to any libraries other than built-in Python ones and pandas.
Respond directly to the question once you have enough information to answer it."""
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system,
),
("human", "{question}"),
# This MessagesPlaceholder allows us to optionally append an arbitrary number of messages
# at the end of the prompt using the 'chat_history' arg.
MessagesPlaceholder("chat_history", optional=True),
]
)


def _get_chat_history(x: dict) -> list:
"""Parse the chain output up to this point into a list of chat history messages to insert in the prompt."""
ai_msg = x["ai_msg"]
tool_call_id = x["ai_msg"].additional_kwargs["tool_calls"][0]["id"]
tool_msg = ToolMessage(tool_call_id=tool_call_id, content=str(x["tool_output"]))
return [ai_msg, tool_msg]


chain = (
RunnablePassthrough.assign(ai_msg=prompt | llm_with_tools)
.assign(tool_output=itemgetter("ai_msg") | parser | tool)
.assign(chat_history=_get_chat_history)
.assign(response=prompt | llm | StrOutputParser())
.pick(["tool_output", "response"])
)
chain.invoke({"question": "What's the correlation between age and fare"})
{'tool_output': 0.11232863699941616,
'response': 'The correlation between age and fare is approximately 0.1123.'}

此运行的 LangSmith 跟踪记录在此:https://smith.langchain.com/public/14e38d70-45b1-4b81-8477-9fd2b7c07ea6/r

Agent

对于复杂的问题,让 LLM 能够迭代地执行代码,同时维护其先前执行的输入和输出来进行交互会很有帮助。这时 Agent 就派上用场了。它们允许 LLM 决定一个工具需要调用多少次,并跟踪到目前为止已进行的执行。[create_pandas_dataframe_agent](https://python.langchain.com/api_reference/experimental/agents/langchain_experimental.agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent.html) 是一个内置 Agent,可以轻松地处理数据帧:

from langchain_experimental.agents import create_pandas_dataframe_agent

agent = create_pandas_dataframe_agent(
llm, df, agent_type="openai-tools", verbose=True, allow_dangerous_code=True
)
agent.invoke(
{
"input": "What's the correlation between age and fare? is that greater than the correlation between fare and survival?"
}
)


> Entering new AgentExecutor chain...

Invoking: `python_repl_ast` with `{'query': "df[['Age', 'Fare']].corr().iloc[0,1]"}`


0.11232863699941621
Invoking: `python_repl_ast` with `{'query': "df[['Fare', 'Survived']].corr().iloc[0,1]"}`


0.2561785496289603The correlation between Age and Fare is approximately 0.112, and the correlation between Fare and Survival is approximately 0.256.

Therefore, the correlation between Fare and Survival (0.256) is greater than the correlation between Age and Fare (0.112).

> Finished chain.
{'input': "What's the correlation between age and fare? is that greater than the correlation between fare and survival?",
'output': 'The correlation between Age and Fare is approximately 0.112, and the correlation between Fare and Survival is approximately 0.256.\n\nTherefore, the correlation between Fare and Survival (0.256) is greater than the correlation between Age and Fare (0.112).'}

此次运行的 LangSmith trace: https://smith.langchain.com/public/6a86aee2-4f22-474a-9264-bd4c7283e665/r

多个 CSV 文件

要处理多个 CSV 文件(或数据帧),我们只需将多个数据帧传递给我们的 Python 工具。我们的 create_pandas_dataframe_agent 构造函数可以直接完成此操作,我们可以传递一个数据帧列表而不是单个数据帧。如果我们自己构建一个链,我们可以这样做:

df_1 = df[["Age", "Fare"]]
df_2 = df[["Fare", "Survived"]]

tool = PythonAstREPLTool(locals={"df_1": df_1, "df_2": df_2})
llm_with_tool = llm.bind_tools(tools=[tool], tool_choice=tool.name)
df_template = """\`\`\`python
{df_name}.head().to_markdown()
>>> {df_head}
\`\`\`"""
df_context = "\n\n".join(
df_template.format(df_head=_df.head().to_markdown(), df_name=df_name)
for _df, df_name in [(df_1, "df_1"), (df_2, "df_2")]
)

system = f"""You have access to a number of pandas dataframes. \
Here is a sample of rows from each dataframe and the python code that was used to generate the sample:

{df_context}

Given a user question about the dataframes, write the Python code to answer it. \
Don't assume you have access to any libraries other than built-in Python ones and pandas. \
Make sure to refer only to the variables mentioned above."""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])

chain = prompt | llm_with_tool | parser | tool
chain.invoke(
{
"question": "return the difference in the correlation between age and fare and the correlation between fare and survival"
}
)
0.14384991262954416

本次运行的 LangSmith 跟踪记录如下:https://smith.langchain.com/public/cc2a7d7f-7c5a-4e77-a10c-7b5420fcd07f/r

沙盒化代码执行

有许多工具,如 E2BBearly,提供了沙盒化的 Python 代码执行环境,以便为代码执行链和代理提供更安全的保障。

后续步骤

对于更高级的数据分析应用,我们建议您查看:

  • SQL 教程:处理 SQL 数据库和 CSV 的许多挑战对于任何结构化数据类型都是通用的,因此即使您使用 Pandas 进行 CSV 数据分析,阅读 SQL 技术也很有用。
  • 工具使用:有关与调用工具的链和代理协同工作的通用最佳实践的指南。
  • 代理:理解构建 LLM 代理的基础知识。
  • 集成:如 E2BBearly 等沙盒环境,SQLDatabase 等实用程序,以及像 Spark DataFrame 代理 这样的相关代理。